### Distributions of local signs and murmurations

Kimball Martin

The University of Oklahoma

#### Murmurations in Arithmetic Geometry and Related Topics Simons Center November 11-15, 2024

I. Phenomena for global root numbers (Fricke eigenvalues) of modular forms

- Root number bias
- Orrelation with initial Fourier coefficients
- Murmurations

II. Phenomena for local root numbers (Atkin–Lehner eigenvalues) of modular forms (see *arXiv:2409.02338*)

- Local root number bias
- 2 Correlation with initial Fourier coefficients
- Ourmurations

Takeaway: don't need root numbers for murmurations (for MFs)

#### Root number review

$$\begin{split} f(z) &= \sum a_n q^n \in S_k(N) = S_k(\Gamma_0(N)) \text{ - newform} \\ L(s,f) &= \sum \frac{a_n}{n^s} \times L_\infty(s,f) = \prod_{p \leq \infty} L_p(s,f) \text{ - completed } L\text{-function} \\ \text{Global and local functional equations:} \end{split}$$

$$L(s, f) = \varepsilon(s, f)L(k - s, f)$$
$$L_p(s, f) = \frac{\varepsilon_p(s, f, \psi_p)}{\gamma_p(s, f, \psi_p)}L_p(k - s, f)$$

Global and local root numbers are  $\varepsilon$ -values at center  $s = \frac{k}{2}$ :

$$w_f = \prod_{p \le \infty} w_{f,p} = \pm 1, \quad w_{f,p} = 1 \text{ for } p \nmid N\infty$$

E.g.,

$$\varepsilon(s,f) = w_f N^{\frac{k}{2}-s}, \quad \text{so } w_f = \varepsilon(s,\frac{k}{2})$$

• • = • • = •

### Root number review (cont'd)

Global and local root numbers are  $\varepsilon$ -values at center  $s = \frac{k}{2}$ :

$$w_f = \prod_{p \le \infty} w_{f,p} = \pm 1, \quad w_{f,p} = 1 \text{ for } p \nmid N\infty$$

Global root number controls (parity of) order of vanishing at  $s = \frac{k}{2}$ :

$$L(\frac{k}{2}, f) = w_f L(\frac{k}{2}, f)$$

so  $w_f = -1 \implies L(\frac{k}{2}, f) = 0$ 

Local root numbers control signs of Fourier coefficients for  $p \mid N$ 

$$a_p = \begin{cases} -w_{f,p} p^{\frac{k-1}{2}} & p \parallel N \\ 0 & p^2 \mid N, \end{cases}$$

(also control vanishing of "local periods")

Kimball Martin (OU)

### Root number review (end)

Atkin–Lehner operators for  $p \mid N$  and  $\infty$ :

- $W_p$  involution on  $S_k(N)$  locally  $\begin{pmatrix} 1 \\ p^{v_p(N)} \end{pmatrix}$
- $W_{\infty} = (-1)^{\frac{k}{2}}$

Fricke involution on  $S_k(N)$ :

$$W = \prod_{p \mid N\infty} W_p$$

Global and local root numbers are eigenvalues of these involutions:

• 
$$Wf = w_f f$$

• 
$$W_p f = w_{f,p} f$$

Kimball Martin (OU)

• • = • • = •

### Global root number bias: squarefree N

 $S_k^{\rm new}(N)^\pm \subset S_k(N)$  - new subspace with global root number  $w=\pm 1$ 

#### **Equidistribution:**

Iwaniec-Luo-Sarnak (2000): dim  $S_k^{\text{new}}(N)^{\pm} = \frac{k-1}{24}\phi(N) + O((kN)^{\frac{5}{6}})$  $\implies w = +1 \text{ (or } -1) 50\%$  of the time

Theorem (M. 2018, "strict bias")

1

 $\dim S_k^{\text{new}}(N)^+ \ge \dim S_k^{\text{new}}(N)^-,$ 

with equality only if (i) dim  $S_k^{\text{new}}(N) = 0$ ; (ii) N = 2, 3; (iii) or k = 2 and N = 37, 58.

2

$$\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^- = c_N h_{\mathbb{Q}(\sqrt{-N})} - \delta_{k,2},$$

where  $c_N \in \left\{\frac{1}{2}, 1, 2\right\}$  depends only on  $N \mod 8$ .

(二)

э

### Global root number bias: non-squarefree ${\cal N}$

- Pi–Qi (2021):  $k \ge 4, N = M^3$ , M squarefree
- Luo–Pi–Wu (2023): extends Pi–Qi to  $k \ge 2$  and Hilbert modular forms
- M. (2023): N arbitrary

— still get strict bias towards w = +1 except when  $N \neq M^2$ , M squarefree and  $k \geq 12$ 

— for fixed  $k, \dim S_k^{\rm new}(N)^+ \geq \dim S_k^{\rm new}(N)^-$  for all but finitely many N.

— for fixed M squarefree, get bias towards  $w=(-1)^{k/2+\omega(M)}$  for  $k\gg 0$ 

Proof (M. 2023) based on trace formula:

$$\operatorname{tr}_{S_k(N)} W = (-1)^{k/2} \frac{1}{2} \sum_{M \mid N, N/M \in \Box} \mu(\sqrt{N/M}) H(-4M) + \delta_{k,2},$$

H(D) - Hurwitz class number (weighted count of pos. def. BQFs/~)

### Local root number bias

 $N = p^r M$   $(r > 0, p \nmid M)$  — for simplicity, assume M squarefree  $S_k^{\text{new}}(N)^{\pm_p} \subset S_k(N)$  - new subspace with local root number  $w_p = \pm 1$ 

**Equidistribution:**  $w_p = 1$  (or -1) 50% of the time

Theorem 1 (M.)

 $If r \neq 2,$ 

$$(-1)^{\frac{k}{2}+\omega(M)}(\dim S_k^{\text{new}}(N)^{+_p} - \dim S_k^{\text{new}}(N)^{-_p}) \ge 0,$$

with equality iff  $\left(\frac{-p^r}{q}\right) = 1$  for some prime  $q \mid M$  when M odd. 2 If r = 2, as  $k + M \to \infty$ ,

 $\dim S_k^{\operatorname{new}}(N)^{+_p} - \dim S_k^{\operatorname{new}}(N)^{-_p} \to -\infty.$ 

- (1)  $w_p$  has a strict bias towards  $(-1)^{\frac{k}{2}+\omega(M)}$ - also get formula for  $\dim S_k^{\text{new}}(N)^{+_p} - \dim S_{k-1}^{\text{new}}(N)^{-_p}$ 

## Bias of initial Fourier coefficients w.r.t. global root numbers

 $\ell$  prime,  $\ell \nmid N$ 

Theorem (M–Pharis (2022))

N squarefree,  $N \gg \ell.$  Then\*

$$\operatorname{tr}_{S_k^{\operatorname{new}}(N)} \pm T_\ell \sim \pm \frac{1}{4} \ell^{\frac{k}{2} - 1} H(4\ell N).$$

- use Yamauchi/Skoruppa-Zagier trace formula
- idea: trace formula for  $T_\ell W_N$  is similar to that for  $T_1 W_N$  when  $\ell \ll N$
- $a_{\ell}$  tends to be *positive* for positive root number (N large)
- N squarefree can be relaxed

\*Errata on webpage and https://arxiv.org/abs/2409-02338 ( ) () () ()

 $\ell$  prime,  $\ell \nmid N$ 

N = pM squarefree

#### Theorem (M.)

• If  $p \gg \ell$ , then  $\operatorname{tr}_{S_k^{\operatorname{new}}(pM)_p^{\pm}} T_{\ell}$  has the same sign as  $\operatorname{tr}_{S_k^{\operatorname{new}}(pM)_p^{\pm}} T_{\ell}$  if both are nonzero.

When M is odd, both traces are nonzero iff (<sup>-p</sup>/<sub>q</sub>) = (<sup>-pℓ</sup>/<sub>q</sub>) = 1 for each prime q | N.

•  $\implies$  signs of  $a_{\ell}$  and  $w_p$  are positively (resp. negatively) correlated for  $p \gg \ell$  when  $w_p = +1$  (resp.  $w_p = -1$ ) is the more common local root number

• recall  $w_p = (-1)^{rac{k}{2} + \omega(M)}$  is the more common local root number

- $\operatorname{tr} T_1 = \operatorname{dimension} \operatorname{of} S_k^{\operatorname{new}}(N)$
- $trW = trWT_1 \rightsquigarrow$  root number bias
- ${\rm tr}WT_\ell$  for  $\ell \ll N \rightsquigarrow$  initial correlation of  $a_\ell$  with w
- ${\rm tr} W_p = {\rm tr} W_p T_1 \rightsquigarrow$  local root number bias
- $\mathrm{tr} W_p T_\ell$  for  $\ell \ll N \rightsquigarrow$  initial correlation of  $a_\ell$  with  $w_p$

**Question:** Any correlation of  $a_{\ell}$  with w or  $w_p$  for large  $\ell$ ? Yes – murmurations

A B M A B M

### Murmurations

- elliptic curves He-Lee-Oliver-Pozdnyakov (computations)
- modular forms Sutherland (computations), Zubrilina (proofs for squarefree levels)
- other *L*-functions...

Murmurmation averages (global root numbers):

$$A_k^{\pm}(\ell; X, Y) = \ell^{1 - \frac{k}{2}} \sum_{X < N < Y}' \sum_{f \in S_k(N)^{\pm} \ \mathrm{new}} a_\ell(f)$$

or

$$\begin{split} A_k(\ell; X, Y) &= A_k^+(\ell; X, Y) - A_k^-(\ell; X, Y) \\ &= \ell^{1 - \frac{k}{2}} \sum_{X < N < Y}' \sum_{f \in S_k(N) \text{ new}} w_f a_\ell(f) = \ell^{1 - \frac{k}{2}} \sum_{X < N < Y}' \operatorname{tr} WT_\ell \end{split}$$

For simplicity:  $\sum'$  means restrict to squarefree N coprime to  $\ell$ 

### Weight 2 murmurations for global root numbers



 $A_2^{\pm}(\ell, X, 2X)$  for  $\ell \leq 4X$  with X = 1000

### Weight 2 murmurations for global root numbers



 $A_2^{\pm}(\ell, X, 2X)$  for  $\ell \leq 4X$  with X = 2000

#### Zubrilina:

• murmurmation averages tend to scale-invariant murmuration functions in  $\ell/X$ :

$$A_k(\ell, X, \beta X) \to F_k(\ell/X, \beta)$$

for  $\beta>1$  as  $\ell,X\to\infty$  such that  $\ell/X\to x$ 

- get murmuration density function ( $\beta \to 0$ ) by considering  $A_k(\ell, X, Y)$  with Y = X + o(X)
- properties of murmuration functions for k=2

First experiment (Type I):

- $\operatorname{tr} T_{\ell} W_Q \approx \operatorname{tr} T_{\ell} W_N$  if  $Q \approx N$
- $\bullet$  take N=MQ, M fixed,  $Q\rightarrow\infty$  coprime to M

then

$$A_k^Q(\ell; X, Y) = \ell^{1-\frac{k}{2}} \sum_{X < N = QM < Y}' \operatorname{tr} W_Q T_\ell$$

should behave similarly to

$$A_k(\ell; X, Y) = \ell^{1-\frac{k}{2}} \sum_{X < N < Y}' \operatorname{tr} WT_\ell$$

Note:  $W_Q = \prod_{p|Q} W_p$ — can look at murmurations wrt single  $W_p$  by taking Q = p (later)

### Murmurations for local root numbers: weight 2, N = 2Q



 $\frac{1}{\sqrt{2}}A_2^Q(\ell,X,2X)$  for N=2Q with X=1000

### Murmurations for local root numbers: weight 2, N = 2Q



 $\frac{1}{\sqrt{2}}A_2^Q(\ell,X,2X)$  for N=2Q with X=2000

### Murmurations for local root numbers: weight 4, N = 5Q



 $\frac{1}{\sqrt{5}}A_4^Q(\ell,X,2X)$  for N=5Q with X=5000

### Murmurations for local root numbers: weight 4, N = 5Q



 $\frac{1}{\sqrt{5}}A_4^Q(\ell,X,2X)$  for N=5Q with X=15000

First experiment (Type I): N = MQ, M fixed, Q large successful

**Theorem:** limit as  $\frac{\ell}{X} \to x$  tends to  $c\sqrt{x} + \delta_{k=2}d$  when  $x < \frac{1}{4M} - \varepsilon$ **Proof:** Average initial bias of  $a_{\ell}$ 's with  $w_Q$ 

Second experiment (Type II):

 $\bullet$  take  $N=QM,\,Q$  fixed,  $M\to\infty$  coprime to Q

similar to before, consider

$$A_k^Q(\ell; X, Y) = \ell^{1-\frac{k}{2}} \sum_{X < N = QM < Y}' \sqrt{M} \operatorname{tr} W_Q T_\ell$$

 $\bullet\,$  note there is a weighting factor of  $\sqrt{M}=\sqrt{N/Q}$  so averages  $\not\to 0$ 

A (1) < A (2) < A (2) </p>

# Murmurations for local root numbers: weight 2, N = 2M (Q = 2)



 $A_2^Q(\ell, X, 2X)$  for N = 2M with X = 3000 (Q = 2)

# Murmurations for local root numbers: weight 2, N = 2M (Q = 2)



 $A_2^Q(\ell, X, 2X)$  for N = 2M with X = 6000 (Q = 2)

# Murmurations for no root numbers: weight 2, N = M (Q = 1)



 $A_2^Q(\ell, X, 2X)$  for N = M with X = 2000 (Q = 1)

# Murmurations for no root numbers: weight 2, N = M (Q = 1)



 $A_2^Q(\ell, X, 2X)$  for N = M with X = 4000 (Q = 1)

# Smoothed murmurations for no root numbers: weight 2, $N = M \ (Q = 1)$



 $A_2^Q(\ell, X, 2X)$  for N = M with X = 4000 (Q = 1) smoothed by averaging over ranges  $[\ell, \ell + \ell^{\frac{1}{2}}]$ 

# Smoothed murmurations for no root numbers: weight 2, $N = M \ (Q = 1)$



 $A_2^Q(\ell, X, 2X)$  for N = M with X = 4000 (Q = 1) smoothed by averaging over ranges  $[\ell, \ell + \ell^{\frac{3}{4}}]$ 

First experiment (Type I): N = MQ, M fixed, Q large successful (+ partial theorem)

Second experiment (Type II):  $N=QM,\,Q$  fixed, M large successful (after weighting by  $\sqrt{M}$  and possibly smoothing)

(no theorem: unbounded number of terms in trace formula)

Question: Can we work with more general families?

- can we choose  $Q \mid N$  randomly, maybe with prescribe growth rate?
- does it matter if we use local root number bias? (recall  $w_p$  is biased toward  $(-1)^{\frac{k}{2}+\omega(M)}$  for N = pM when M is squarefree odd).

### Murmuration averages for N = QM, $Q \approx \sqrt{N}$



restrict to  $N\mbox{'s}$  with factor  $Q\approx \sqrt{N}$  no apparent pattern

Kimball Martin (OU)

29/37

### Signing murmation averages to bias $(-1)^{rac{k}{2}+\omega(M)}$



N=5M, weight 4, p=Q=5 with weighted with sign  $(-1)^{\frac{k}{2}+\omega(M)}w_p$  no apparent pattern

### Expectations

— should take N = QM along a sequence so that (N, Q) arithmetically well-behaved to see (interesting) murmations — murmurations wrt  $w_p$ 's not connected with initial bias to  $(-1)^{\omega(M)}$  when  $p \ll N$  (it really is only for  $\ell \ll p$ )

#### Conjecture 1

There are murmurations wrt  $w_Q = \prod_{p|Q} w_Q$ , which are scale invariant in  $\ell/X$ , in the following situations. Here N = QM, (Q, M) = 1:

- (Type I): M fixed, Q → ∞ for MFs or ECs (possibly after smoothing for ECs)
- (Type II): Q fixed,  $M\to\infty$  for MFs but not ECs (after weighting by  $\sqrt{M}$  and possibly smoothing)

— can take varying Q, M along all/squarefree/prime integers which are coprime to the other

< 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

3

### Comparing murmurations wrt different $W_Q$ 's

For simplicity: N = pq (p, q distinct primes)

— could look at murmurations averages for all AL-operators:  $W_1, W_p, W_q, W_{pq}$ 

Better:

— look at murmurations with fixed AL-signs:  $\varepsilon = (w_p, w_q): \textit{++, --, +-, -+}$ 

— analogous to plotting murmurations for fixed root numbers (red + blue plots), rather than difference

related by linear combinations:  $\mathrm{tr}_{S_k^{\mathrm{new}}(pq)^{\varepsilon}}T_\ell =$ 

$$\frac{1}{4}\left(\mathrm{tr}T_{\ell}W_{1}+w_{p}\mathrm{tr}T_{\ell}W_{p}+w_{q}\mathrm{tr}T_{\ell}W_{q}+w_{p}w_{q}\mathrm{tr}T_{\ell}W_{pq}\right)$$

御下 米油下 米油下 一連

### Murmurations on AL-eigenspaces for N = 2q: weight 2



Kimball Martin (OU)

33 / 37

### Murmurations on AL-eigenspaces for N = 2q: weight 4



Kimball Martin (OU)

< 3 > < 3 >

### Murmurations on AL-eigenspaces for N = pq: weight 4



Kimball Martin (OU)

35 / 37

#### Conjecture 2

Taking  $N = p_1 p_2 \dots p_r \to \infty$  with  $p_1 < p_2 \dots < p_r$ , one sees murmurations on each Atkin–Lehner eigenspace  $S_k^{\text{new}}(pq)^{\varepsilon}$ ( $\varepsilon = (w_{p_1}, \dots, w_{p_r})$ ) in either of the following cases:

- N runs over all squarefree products of r primes (all  $p_i$ 's vary)
- N runs over all squarefree multiples of  $p_1 \dots p_m$ , m < r (only  $p_{m+1}, \dots, p_r$ ) vary

When N = pq (p < q): expect AL-eigenspace murmurations are dominated by those for global root number and those for  $W_q$ 

Reason: look at 
$$\underbrace{\operatorname{tr} T_{\ell} W_1}_{\to 0} + \underbrace{\operatorname{tr} T_{\ell} W_p}_{\to 0} + w_q \operatorname{tr} T_{\ell} W_q + w_p w_q \operatorname{tr} T_{\ell} W_{pq}$$

A (1) < A (1) < A (1) </p>

### $W_Q$ murmurations for elliptic curves for N = 2Q



 $W_Q$  murmurations  $W = -W_{2Q}$  murmurations

Kimball Martin (OU)

Local signs and murmurations

37 / 37