Statistics in Number Theory

Kimball Martin

Osaka Metropolitan University

June 12, 2025

Kimball Martin (OMU)

Statistics in Number Theory

Explore statistical behavior of discrete collections of objects in number theory (arithmetic statistics):

- Primes (GL(1))
- Elliptic Curves (GL(2))
- Modular Forms (GL(2))

Themes:

- Compare actual behavior with random models
- Computational data is useful, but (almost) never enough!

 $\mathcal{P} = \{ \mathsf{primes} \ p \} = \{2,3,5,7,11, \ldots \}$

— Primes are building blocks of arithmetic, but there is no simple formula to describe $\mathcal{P}\subset\mathbb{N}$

- Study distribution and patterns
 - **Conjecture** (Legendre ≈ 1797):

$$\pi(x) := \# \left\{ p \in \mathcal{P} : p < x \right\} \sim \frac{x}{\log x}$$

- Prime Number Theorem (Hadamard, de la Vallée Pousson 1896): true!
- equivalently, the n-th prime $p_n\approx n\log n$

• Prime Number Theorem:

$$\pi(x) := \# \left\{ p \in \mathcal{P} : p < x \right\} \sim \frac{x}{\log x}$$

i.e., the *n*-th prime $p_n \approx n \log n$

• Random model (Cramér 1936):

$$\operatorname{Prob}(p \in \mathcal{P}) \approx \frac{1}{\log x} \quad \text{if} \quad p \approx x$$

 model suggests Cramér's conjecture: p_{n+1} − p_n ≪ (log n)² (gaps between primes cannot get too big, still open)

(Asymptotic inequality notation: $f(n) \ll g(n)$ means f(n) = O(g(n)), i.e., there exists C, N such that $f(n) \leq Cg(n)$ for n > N)

I. Primes: distribution mod m

Random model predicts: primes are "equidistributed" mod $m \ m = 10$:

*		*				*		*	
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80

Prime Number Theorem for arithmetic progressions (1896): Let $\phi(m) = \# \{1 \le a < m : \gcd(a, m) = 1\}$. If $\gcd(a, m) = 1$, then

$$\# \{ p \in \mathcal{P} : p < x \text{ and } p \equiv a \mod m \} \sim \frac{1}{\phi(m)} \frac{x}{\log x}$$

• **Chebyshev's bias** (1853): numerically, there are more primes 3 mod 4 than 1 mod 4 (up to any given x)

x	$\# \{ p < x : 1 \bmod 4 \}$	$\# \left\{ p < x : 3 \bmod 4 \right\}$
100	11	13
500	44	50
1000	80	87
5000	329	339
10000	609	619

- first counterexample at x = 26861, next at 616841
- Littlewood (1914): there are infinitely many counterexamples
- **Conjecture** (Knapowski–Turán, 1962): For 100% of $x \in \mathbb{N}$, Chebyshev's bias holds, i.e.,

$$\# \{ p < x : p \equiv 3 \mod 4 \} > \# \{ p < x : p \equiv 1 \mod 4 \}$$

I. Primes: biases mod m (cont'd)

 Conjecture (Knapowski–Turán, 1962): For 100% of x ∈ N, Chebyshev's bias holds, i.e.,

 $\# \{ p < x : p \equiv 3 \bmod 4 \} > \# \{ p < x : p \equiv 1 \bmod 4 \}$

• Kaczorwoski (1996), Sarnak: False!

$$\frac{\# \{x \le N : \mathsf{Chebyshev's \ bias \ holds}\}}{N} \quad \mathsf{has \ no \ limit}$$

• Rubinstein–Sarnak (1994): $S = \{x \in \mathbb{N} : \text{Chebyshev's bias holds}\}$

$$\frac{\sum_{x \le N: x \in S} \frac{1}{x}}{\sum_{x \le N} \frac{1}{x}} \to 0.9959\dots$$

i.e., Chebyshev's bias holds for $\approx 99.59\%$ of x when we use "logarithmic measure" on $\mathbb N$

Kimball Martin (OMU)

• Rubinstein–Sarnak (1994): $S = \{x \in \mathbb{N} : \text{Chebyshev's bias holds}\}$

$$\frac{\sum_{x \le N: x \in S} \frac{1}{x}}{\sum_{x \le N} \frac{1}{x}} \to 0.9959\dots$$

i.e., Chebyshev's bias holds for $\approx 99.59\%$ of x when we use "logarithmic measure" on $\mathbb N$

What is the *reason* for this bias?

- for any odd n, $n^2 \equiv 1 \mod 4$

- i.e., numbers 1 mod 4 must contain all odd squares, making them slightly less likely to be prime

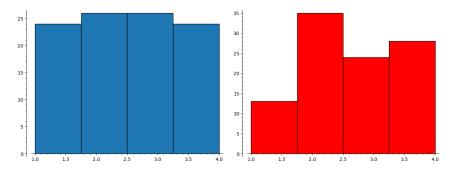
– similar phenomena mod m for any $m\geq 3^*$

*see: Prime number races by Andrew Granville and Greg Martin, *Amer. Math. Monthly*, 2006

Kimball Martin (OMU)

I. Primes: variance mod m

- Cowan (*arXiv:2504.20691*): primes are more equidistributed mod *m* than random!
- Histograms of first 100 primes mod 5 (excluding p = 5) versus 100 random numbers coprime to 5



Why???

Many definitions...

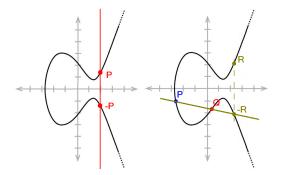
An **elliptic curve** over a field F is any of the following:

- $E:y^2=x^3+ax+b,$ where $a,b\in F^\dagger$ such that the discriminant $\Delta_E=-(4a^3+27b^2)\neq 0$
- a smooth projective cubic curve E/F with a marked point ($O = \infty$ in the above Weierstrass form)
- a smooth projective curve E/F of genus 1, together with a marked point O (defined over F)
- a smooth projective curve E/F with an (additive) group structure (addition and negation should be given by rational functions)

[†]Assuming char $F \neq 2, 3$, otherwise the general form is more complicated \Rightarrow = $\sim \sim \sim$

II. Elliptic curves: group law

 $E: y^2 = x^3 + ax + b$ cubic curve — points form an abelian group



Three points on line sum to $0 = (0, \infty)$: P, -P on same vertical line $\iff 0 + P + (-P) = 0$ P + Q + (-R) = 0, R = P + Q

(Images from Wikimedia Commons)

Elliptic curves arise in many interesting number theory problems...

• (Pépin, Lucas, Sylvester ≈ 1879) Sums of 2 cubes:

$$x^3 + y^3 = n \quad \longleftrightarrow \quad y^2 = x^3 - 432n^2$$

- (Fermat 1637, Frey 1986, Wiles/Taylor–Wiles 1995) Fermat's Last Theorem: $x^n + y^n = z^n$ has no solutions in positive integers for n > 2
- (Gauss 1801, Goldfeld 1976) Class number problems, e.g., for which D does $\mathbb{Z}[\sqrt{D}]$ have unique factorization?
- integer factorizations and cryptography

...

II. Elliptic curves: counting

To count elliptic curves over $\ensuremath{\mathbb{Q}}$

$$E: y^2 = x^3 + ax + b, \quad \Delta_E = -(4a^3 + 27b^2) \neq 0$$

we need to order them ...

—first change variables to assume $a, b \in \mathbb{Z}$ —but changing variables changes discriminant Δ_E , so it is not an invariant...

Three standard options:

- Order by height, e.g., $H_E = \max \{|a|, |b|\}$
- Order by absolute discriminant $|\Delta_E|$
- Order by conductor $N = N_E$

Conductor is most natural from arithmetic/geometry Precise definition is technical, but N divides Δ_E

$$E: y^2 = x^3 + ax + b, \quad \Delta_E = -(4a^3 + 27b^2) \neq 0$$

"Smallest" example:

$$E = E_{11a3} \simeq X_0(11) : y^2 = x^3 - 432x + 8208$$
$$\Delta_E = -2^8 \cdot 3^{12} \cdot 11$$

Actually, has another cubic expression with smaller discriminant

$$E': y^2 + y = x^3 - x^2, \quad \Delta_{E'} = -11$$

Conductor:

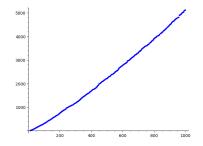
$$N_E = N_{E'} = 11$$

Meaning: $E \mod 11$ has a nodal singularity

Kimball Martin (OMU)

- Cremona (1992): algorithm for enumerating all modular elliptic curves with conductor $N \leq X$
- Wiles/Taylor–Wiles (1995), Breuil–Conrad–Diamond–Taylor (2001): all elliptic curves are modular
- Cremona's 1992 database: 5113 curves with $N \leq 999$
- current status: 3,064,705 curves with conductor $N \leq$ 500,000 (complete database)

Graph $\# \{E : N \leq X\}$ on Cremona's original database (X < 1000)



- looks like number of curves with $N \leq X$ grows faster than X
- best fit exponent for $\# \{E : N \leq X\} \approx cX^d$ is $d \approx 1$
- Duke–Kowalski (2000): upper bound $\# \{E : N \leq X\} \ll X^{1+\varepsilon}$

II. Elliptic curves: counting (cont'd $\times 2$)

Conjecture: (Brumer–McGuinness 1990/Watkins 2008):

 $\# \{E : N \le X\} \sim cX^{5/6}$

• Idea: generically expect $N \leq |\Delta_E| \leq CN$ for some constant C• so expect: $\# \{E : N \leq X\} \sim c \# \{E : |\Delta_E| \leq X\}$ • for $E : y^2 = x^3 + ax + b$ $(a, b \in \mathbb{Z})$, expect $|\Delta_E| = |4a^3 + 27b^2| \ll X \iff \max\{|a|^3, b^2\} \ll X$

$$\iff |a| \ll X^{1/3}, \quad |b| \ll X^{1/2}$$

• so get $\ll X^{1/3} \cdot X^{1/2} = X^{5/6}$ possibilities for $\{(a, b)\}$ • $\# \{E : N \le X\} \gg X^{5/6}$ is easy Conjecture: (Brumer-McGuinness 1990/Watkins 2008):

 $\# \{E : N \le X\} \sim cX^{5/6}$

• Theoretical bounds

$$X^{5/6} \ll \# \{ E : N \le X \} \ll X^{1+\varepsilon}$$

- data suggests closer to $X^{1} \label{eq:closer}$
- extensive data for prime N < 2,000,000 (3,218,940 curves) agrees with $X^{5/6}$ (Bennett–Gherga–Rechnitzer 2019)
- ${\, \bullet \,}$ we believe convergence to $X^{5/6}$ is very slow because of many "excess curves" of "small" conductor
- tension between data and theory/heuristics is prominent in this area

- Are conductors N distributed randomly?
- no, there are some restrictions on N (e.g., $p^3 \nmid N$ for $p \geq 5)$
- conductors tend to cluster together (many elliptic curves with same N)
- numerically there are many more even conductors than odd conductors

II. Elliptic curves: counting by rank

Count elliptic curves (f.g. abelian groups!) with certain properties, such as: $\operatorname{rank}(E) := r$ where $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus$ (finite group)

• Minimalist Conjecture (1980s?): 50% of elliptic curves have rank 0, and 50% have rank 1

– numerically it appears many more have rank 1 than rank 0, and a positive proportion have rank 2, 3 or 4 $\,$

- conjecture (Néron 1950): ranks of elliptic curves are bounded − rank ≥ 4 was known (Wiman 1945)
- **conjecture** (Cassels 1966, Tate 1974, Mestre 1982): ranks of elliptic curves are unbounded
 - rank ≥ 12 was known (Mestre 1982)
- **Conjecture** (Park–Poonen–Voight–Wood 2019): ranks of elliptic curves are bounded
 - rank ≥ 28 was known (Elkies 2006)
 - now ≥ 29 is known (Elkies–Klagsbrun 2024)

$$\begin{split} \mathfrak{H} &= \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\} - \operatorname{upper half plane} \\ \operatorname{SL}_2(\mathbb{R}) \text{ acts on } \mathfrak{H} \text{ by linear fractional transformations:} \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} z &= \frac{az+b}{cz+d} \\ (\text{orientation-preserving isometries of the hyperbolic plane}) \end{split}$$

Congruence subgroups:

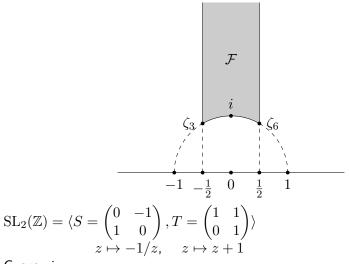
$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : N \text{ divides } c \right\}$$

Modular curves:

 $\begin{array}{l} Y_0(N) = \Gamma_0(N) \backslash \mathfrak{H} \\ X_0(N) = Y_0(N) \cup \{ \mathrm{cusps} \} \mbox{ — compact Riemann surface} \end{array}$

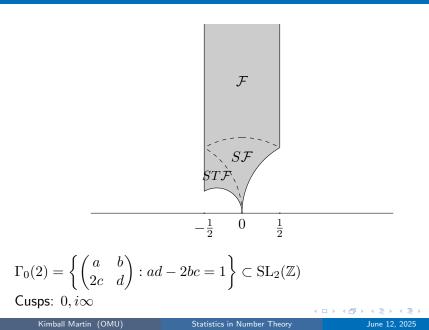
— parametrize elliptic curves/ ${\mathbb C}$ with a cyclic subgroup of order N

III. Modular forms: $X_0(1) = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$



Cusps: $i\infty$

III. Modular forms: $X_0(2) = \Gamma_0(2) \setminus \mathfrak{H}$



III. Modular forms: definition

 $M_k(N)$ – (holomorphic) modular forms of weight k and level N:

$$f:\mathfrak{H} \to \mathbb{C}$$

$$f(\begin{pmatrix} a & b \\ c & d \end{pmatrix} z) = (cz+d)^k f(z), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

+ growth conditions

 $M_k(N)$ – finite dimensional vector space, trivial unless $k \ge 2$ even $f(z+1) = f(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} z) = f(z) \rightsquigarrow$ Fourier expansion:

$$f(z) = \sum_{n=0}^{\infty} a_n q^n, \quad q = e^{2\pi i z}$$

Fourier coefficients are arithmetically interesting...

Kimball Martin (OMU)

III. Modular forms: examples

(Eisenstein series)
$$k \ge 4$$
, $\sigma_j(n) = \sum_{d|n} d^j$

$$E_k(z) = \sum_{(c,d)\in\mathbb{Z}^2-0} \frac{1}{(cz+d)^k}$$

= $2\zeta(k) + 2\frac{(2\pi)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(1)$

(theta series) $r_{2k}(n) = \# \{ \text{integer solns to } x_1^2 + \dots + x_{2k}^2 = n \}$

$$\vartheta^{2k}(n) = (\sum_{n \in \mathbb{Z}} q^{n^2})^{2k} = \sum_{n \ge 0} r_{2k}(n) q^n \in M_k(4)$$

Sample corollary: $r_8(n) = 16(\sigma_3(n) - 2\sigma_3(\frac{n}{2}) + 16\sigma_3(\frac{n}{4}))$

III. Modular forms: weight 2

$$\begin{split} f: \mathfrak{H} &\to \mathbb{C} \\ f(\begin{pmatrix} a & b \\ c & d \end{pmatrix} z) = (cz+d)^2 f(z), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) \end{split}$$

$$M_2(N) = \operatorname{Eis}_2(N) \oplus S_2(N)$$

 $S_2(N)$ - cusp forms (holomorphic differentials on $X_0(N)$)

- there is a canonical generating set ‡ $S_{2}(N)$ consisting of primitive (or new) forms $f=\sum a_{n}q^{n}$
- the Fourier coefficients a_n 's of primitive forms are multiplicative: $a_{mn} = a_m a_n$ when gcd(m, n) = 1

[‡]a basis if N is prime

III. Modular forms and elliptic curves

$$f = \sum a_n q^n = q + a_2 q^2 + a_3 q^3 + \dots$$
 primitive

rationality (Fourier coefficient) field: K_f = Q(a₂, a₃,...)
[K_f: Q] finite

Theorem (Modularity, Breuil–Conrad–Diamond–Taylor 2001)

$$\{f \in S_2(N) : \text{primitive, } K_f = \mathbb{Q}\} \iff \{E : \text{ell. curve of conductor } N\}$$
$$a_p = p + 1 - \# \{E \mod p\} \quad (p \nmid N)$$

What about other (weight 2) forms?

- Shimura (1959): f ∈ S₂(N) primitive ⇒ abelian variety of dimension d = [K_f : Q] with multiplication by K_f and conductor N^d
- More general modularity (Ribet 2004, Khare–Winterberger 2009, Kisin 2009): <==

III. Modular forms: weight 2 forms on the LMFDB

L-functions and Modular Forms DataBase (LMFDB) - Imfdb.org

Label	Dim	A	Field	Traces				Ericke eign	<i>q</i> -expansion	
				a_2	a_3	a_5	a_7	There sign	q-expansion	
11.2.a.a	1	0.088	Q	$^{-2}$	-1	1	$^{-2}$	-	$q-2q^2-q^3+2q^4+q^5+2q^6-2q^7+\cdots$	
14.2.a.a	1	0.112	Q	$^{-1}$	$^{-2}$	0	1	-	$q-q^2-2q^3+q^4+2q^6+q^7-q^8+\cdots$	
15.2.a.a	1	0.120	Q	$^{-1}$	$^{-1}$	1	0	-	$q-q^2-q^3-q^4+q^5+q^6+3q^8+\cdots$	
17.2.a.a	1	0.136	Q	$^{-1}$	0	$^{-2}$	4	-	$q-q^2-q^4-2q^5+4q^7+3q^8-3q^9+\cdots$	
19.2.a.a	1	0.152	Q	0	$^{-2}$	3	$^{-1}$	-	$q-2q^3-2q^4+3q^5-q^7+q^9+3q^{11}+\cdots$	
20.2.a.a	1	0.160	Q	0	$^{-2}$	$^{-1}$	2	-	$q-2q^3-q^5+2q^7+q^9+2q^{13}+\cdots$	
21.2.a.a	1	0.168	Q	$^{-1}$	1	$^{-2}$	$^{-1}$	-	$q-q^2+q^3-q^4-2q^5-q^6-q^7+\cdots$	
23.2.a.a	2	0.184	$\mathbb{Q}(\sqrt{5})$	$^{-1}$	0	$^{-2}$	2	-	$q-eta q^2+(-1+2eta)q^3+(-1+eta)q^4+\cdots$	
24.2.a.a	1	0.192	Q	0	$^{-1}$	$^{-2}$	0	-	$q-q^3-2q^5+q^9+4q^{11}-2q^{13}+\cdots$	
26.2.a.a	1	0.208	Q	$^{-1}$	1	$^{-3}$	$^{-1}$	-	$q-q^2+q^3+q^4-3q^5-q^6-q^7+\cdots$	
26.2.a.b	1	0.208	Q	1	-3	$^{-1}$	1	-	$q+q^2-3q^3+q^4-q^5-3q^6+q^7+\cdots$	
27.2.a.a	1	0.216	Q	0	0	0	$^{-1}$	-	$q-2q^4-q^7+5q^{13}+4q^{16}-7q^{19}+\cdots$	
29.2.a.a	2	0.232	$\mathbb{Q}(\sqrt{2})$	$^{-2}$	2	$^{-2}$	0	-	$q+(-1+\beta)q^2+(1-\beta)q^3+(1-2\beta)q^4+\\$	

- a_2 's start off negative [Farmer–Koutsoliotas 2016]
- Fricke sign tends to be -1 [M 2018, 2023]
- rationality (Fourier coefficient) field is often $\mathbb Q$ [misleading]

Kimball Martin (OMU)

III. Modular forms: counting by rationality field

- Question: Fix K/\mathbb{Q} . How many primitive *minimal* weight 2 f are there with level N < X with $K_f = K$?
- Conjecture (Brumer–McGuinness 1990/Watkins 2008): $\sim cX^{5/6}$ if $K = \mathbb{Q}$

Conjecture (Cowan–M)

If $[K:\mathbb{Q}] = d$, this count is

$$\begin{array}{ll} & & X^{2/3+\varepsilon} & d=2 \\ & \ll X^{1/2+\varepsilon} & d=3 \\ & \ll X^{1/3+\varepsilon} & d=4 \\ & \ll X^{1/6+\varepsilon} & d=5 \\ & \ll X^{\varepsilon} & d=6 \\ & \text{finite} & d\geq7 \end{array}$$

Kimball Martin (OMU)

June 12, 2025

29 / 29