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Explore statistical behavior of discrete collections of objects in number
theory (arithmetic statistics):

@ Primes (GL(1))
@ Elliptic Curves (GL(2))
@ Modular Forms (GL(2))

Themes:
@ Compare actual behavior with random models

o Computational data is useful, but (almost) never enough!
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|. Primes: basic distribution

P = {primes p} = {2,3,5,7,11, ...}

— Primes are building blocks of arithmetic, but there is no simple formula
to describe P C N

— Study distribution and patterns

o Conjecture (Legendre ~ 1797):

x
w(z) =#{peP:p<z B v

o Prime Number Theorem (Hadamard, de la Vallée Pousson 1896):
true!

@ equivalently, the n-th prime p, ~ nlogn
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|. Primes: a probabilistic “model”

@ Prime Number Theorem:

x
i.e., the n-th prime p, =~ nlogn
o Random model (Cramér 1936):

1
Prob(pep)w@ if prx

e model suggests Cramér's conjecture: p,1 — pn < (logn)?

(

(gaps between primes cannot get too big, still open)

(Asymptotic inequality notation: f(n) < g(n) means f(n) = O(g(n)),
i.e., there exists C, N such that f(n) < Cg(n) for n > N)
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|. Primes: distribution mod m

Random model predicts: primes are “equidistributed” mod m
m =10 :
* * * *
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80

Prime Number Theorem for arithmetic progressions (1896):
Let p(m) = # {1 <a <m:ged(a,m) =1}. If ged(a, m) = 1, then

1 T

#{pEP:p<xandpEamodm}~m@
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|. Primes: biases mod m

o Chebyshev’s bias (1853): numerically, there are more primes 3 mod
4 than 1 mod 4 (up to any given z)

| #{p<z:1lmod4d} #{p<z:3mod4}
100 11 13
500 44 50
1000 80 87
5000 329 339
10000 609 619

o first counterexample at x = 26861, next at 616841
o Littlewood (1914): there are infinitely many counterexamples

o Conjecture (Knapowski-Turan, 1962): For 100% of = € N,
Chebyshev's bias holds, i.e.,

#{p<zx:p=3modd} >#{p<z:p=1mod4}
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|. Primes: biases mod m (cont'd)

o Conjecture (Knapowski-Turan, 1962): For 100% of =z € N,
Chebyshev's bias holds, i.e.,

#{p<z:p=3mod4} >#{p<z:p=1mod4}
o Kaczorwoski (1996), Sarnak: False!

# {x < N : Chebyshev's bias holds}
N

o Rubinstein—Sarnak (1994): S = {z € N : Chebyshev's bias holds}

has no limit

|—=

LrsNweSs (0950 .
ZmSN T

i.e., Chebyshev's bias holds for ~ 99.59% of = when we use
“logarithmic measure” on N
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|. Primes: biases mod m (cont'd x2)

o Rubinstein—Sarnak (1994): S = {x € N : Chebyshev's bias holds}

=

LrsNweSs (0950 .
ZxSN T

i.e., Chebyshev's bias holds for ~ 99.59% of = when we use
“logarithmic measure” on N

What is the reason for this bias?

— for any odd n, n> =1 mod 4

—i.e., numbers 1 mod 4 must contain all odd squares, making them
slightly less likely to be prime

— similar phenomena mod m for any m > 3*

*see: Prime number races by Andrew Granville and Greg Martin, Amer. Math.
Monthly, 2006
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|. Primes: variance mod m

o Cowan (arXiv:2504.20691): primes are more equidistributed mod m
than random!

Histograms of first 100 primes mod 5 (excluding p = 5) versus 100
random numbers coprime to 5
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II. Elliptic curves: definition

Many definitions...

An elliptic curve over a field F' is any of the following:
o E:y?=2a+ax+ b, where a,b € F! such that the discriminant
Ap = —(4a® +270%) £ 0
@ a smooth projective cubic curve E/F with a marked point (O = oo in
the above Weierstrass form)

@ a smooth projective curve E//F of genus 1, together with a marked
point O (defined over F)

@ a smooth projective curve E/F with an (additive) group structure
(addition and negation should be given by rational functions)

tAssuming char F # 2,3, otherwise the general form is more complicated
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II. Elliptic curves: group law

E :y? = 23 + ax + b cubic curve
— points form an abelian group

Three points on line sum to 0 = (0, c0):
P, —P on same vertical line <= 0+ P+ (—P)=0
P+Q+(-R)=0, R=P+Q

(Images from Wikimedia Commons)
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Il. Elliptic curves: motivation

Elliptic curves arise in many interesting number theory problems...
o (Pépin, Lucas, Sylvester ~ 1879) Sums of 2 cubes:

B +yPP=n +—  y? =13 —432n°
o (Fermat 1637, Frey 1986, Wiles/Taylor—Wiles 1995) Fermat's Last

Theorem: z™ +y™ = 2" has no solutions in positive integers for n > 2

o (Gauss 1801, Goldfeld 1976) Class number problems, e.g., for which
D does Z[/D] have unique factorization?

@ integer factorizations and cryptography
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II. Elliptic curves: counting

To count elliptic curves over Q
E:y =2’ +ax+b Ap=—(4a®+270%) #0

we need to order them...

—first change variables to assume a,b € Z
—but changing variables changes discriminant Ag, so it is not an

invariant...

Three standard options:
o Order by height, e.g., Hg = max {|a/, |b|}
@ Order by absolute discriminant |Ag|
o Order by conductor N = Ng

Conductor is most natural from arithmetic/geometry
Precise definition is technical, but N divides Ag
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Il. Elliptic curves: minimal example

E:y*=a2%+tax+b, Ap=—(4a®+270%) #0
“Smallest” example:
FE = Ej1a3 ~ Xo(11) : % = 23 — 4322 + 8208
Ap=-28-32.11
Actually, has another cubic expression with smaller discriminant
E' P +y=a2—22 Ap=-11

Conductor:
Ng = Np =11

Meaning: E mod 11 has a nodal singularity
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II. Elliptic curves: computing

e Cremona (1992): algorithm for enumerating all modular elliptic
curves with conductor NV < X

o Wiles/Taylor-Wiles (1995), Breuil-Conrad-Diamond—Taylor (2001):
all elliptic curves are modular

@ Cremona’s 1992 database: 5113 curves with NV < 999

@ current status: 3,064,705 curves with conductor N < 500,000
(complete database)
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. Elliptic curves: counting (cont'd)

Graph #{F : N < X} on Cremona’s original database (X < 1000)

Vd

3000

2000

@ looks like number of curves with NV < X grows faster than X
o best fit exponent for #{F: N < X} ~cX%isd=~1
o Duke—Kowalski (2000): upper bound #{E : N < X} <« X!*¢
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Il. Elliptic curves: counting (cont'd x2)

Conjecture: (Brumer—McGuinness 1990/Watkins 2008):

#{E:N <X}~ X6

o Idea: generically expect N < |Ag| < CN for some constant C'
o soexpect: #{E: N < X} ~c#{E:|Ag| <X}
o for E:y? =23 +ax+0b (a,b € Z), expect

Ap| = [4d® +270°| <« X <5 max {|af’,1*} < X
— |a| < X3, |p) < X'/?

@ so get < X /3. X1/2 = X5/6 possibilities for {(a,b)}
o #{E:N < X} > X°6is easy
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II. Elliptic curves: counting — summary

Conjecture: (Brumer—McGuinness 1990/Watkins 2008):

#{E: N <X}~ X6

@ Theoretical bounds
X/« #{E:N< X} < X'F¢

o data suggests closer to X!

@ extensive data for prime NV < 2,000,000,000 (3,218,940 curves)
agrees with X°/6 (Bennett-Gherga—Rechnitzer 2019)

o we believe convergence to X/ is very slow because of many “excess
curves” of “small” conductor

@ tension between data and theory/heuristics is prominent in this area
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lI. Elliptic curves: distributions of conductors

@ Are conductors N distributed randomly?

- no, there are some restrictions on N (e.g., p>{ N for p > 5)
— conductors tend to cluster together (many elliptic curves with same N)

— numerically there are many more even conductors than odd conductors
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II. Elliptic curves: counting by rank

Count elliptic curves (f.g. abelian groups!) with certain properties, such as:
rank(E) := r where E(Q) ~ Z"® (finite group)
e Minimalist Conjecture (1980s?): 50% of elliptic curves have rank 0,
and 50% have rank 1
— numerically it appears many more have rank 1 than rank 0, and a
positive proportion have rank 2, 3 or 4

e conjecture (Néron 1950): ranks of elliptic curves are bounded
— rank > 4 was known (Wiman 1945)
o conjecture (Cassels 1966, Tate 1974, Mestre 1982):
ranks of elliptic curves are unbounded
— rank > 12 was known (Mestre 1982)
e Conjecture (Park—Poonen—Voight-Wood 2019):
ranks of elliptic curves are bounded
— rank > 28 was known (Elkies 2006)
— now > 29 is known (Elkies—Klagsbrun 2024)
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[11. Modular forms: modular curves

H={z€C:Im(z) >0} — upper half plane
SL2(R) acts on $) by linear fractional transformations:

a b 5= az+b
c d ~ cz+d
(orientation-preserving isometries of the hyperbolic plane)

Congruence subgroups:
To(N) = {(Z Z) € SLa(Z) : N divides c}

Modular curves:

Yo(N) =To(N)\H
Xo(N) = Yp(N) U {cusps} — compact Riemann surface

— parametrize elliptic curves/C with a cyclic subgroup of order N
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I1l. Modular forms: X(1) = SLo(Z)\$
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I1l. Modular forms: X4(2) = I'g(2)\$

To(2) = {(2“0 Z) : ad — 2be = 1} C SLy(Z)

Cusps: 0,400
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[1l. Modular forms: definition

M. (N) — (holomorphic) modular forms of weight &k and level N:
f:9H->0C
a b _ k a b
(& 5= ratsen (1)) e

+ growth conditions

M}, (N) — finite dimensional vector space, trivial unless k > 2 even

flz+1)= f((é D z) = f(z) ~» Fourier expansion:

o0
f(2) =) ang", q=€""
n=0

Fourier coefficients are arithmetically interesting...
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lIl. Modular forms: examples

(Eisenstein series) k >4, 0;(n) =3, &’

1
Ey(z) = Z CETIE

(c,d)€Z2—0

T k >
= 200 + 27 S ou sl € M)
n=1

(theta series) ro,(n) = # {integer solns to % + - + 23, =n}

9% (n Zq Zr% n)q" € My(4)

nez n>0

Sample corollary: rg(n) = 16(o3(n) — 203(%5) + 1603(%))

Kimball Martin (OMU) Statistics in Number Theory June 12, 2025



l1l. Modular forms: weight 2

f:95-C
(8 o) =terario (&]) e

MQ(N) = EiSz(N) D SQ(N)

S2(N) - cusp forms (holomorphic differentials on X(V))

o there is a canonical generating set? S2(N) consisting of primitive (or
new) forms f = > anq"”

o the Fourier coefficients a,,'s of primitive forms are multiplicative:
Umn = ama, when ged(m,n) =1

*a basis if N is prime
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lIl. Modular forms and elliptic curves

= Zanq" =q+aq® +a3qg®+ ... primitive

o rationality (Fourier coefficient) field: Ky = Q(a2,as,...)
o [Ky: Q) finite

Theorem (Modularity, Breuil-Conrad—Diamond-Taylor 2001)

{f € S2(N) : primitive, Ky = Q} <— {E: ell. curve of conductor N}
ap = p+1l-—#{Emodp} (pfN)

What about other (weight 2) forms?
e Shimura (1959): f € Sa(N) primitive = abelian variety of
dimension d = [K : Q] with multiplication by K; and conductor N¢
@ More general modularity (Ribet 2004, Khare-Winterberger 2009,
Kisin 2009): <=
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[I1. Modular forms: weight 2 forms on the LMFDB

L-functions and Modular Forms DataBase (LMFDB) — Imfdb.org

Traces

Label Dim A  Field —  Fricke sign g-expansion

a; a3 as ay
11.2aa 1 008 Q —2 -1 1 -2 - -2~ +2¢* + ¢ +2¢° —2¢" + -
142aa 1 0112 Q -1 -2 0 1 = - -2 +q" +2¢°+q" — ¢ +---
15.2.a.a 1 0120 Q -1 -1 1 0 - - - -+ +¢+35+ -
17.2.a.a 1 0136 Q -1 0 -2 4 - q—¢*—q"—2¢°+4¢" +3¢® —3¢° + -
19.2.a.a 1 0152 Q 0 -2 3 -1 - q—2¢° —2¢" +3¢° —q¢" +¢° +3¢" +---
20.2.a.a 1 0160 Q 0 -2 -1 2 - q—2¢° —¢®+29" +¢° +2¢% + -+
21.2.aa 1 0168 Q -1 1 -2 -1 - -+ - -2 - —q"+ -
23.2.a.a 2 0184 Q(v5) -1 0 -2 2 - q— B+ (-1+2B)¢® + (-1 + B)g* + -
242.aa 1 0192 Q 0 -1 -2 0 - q— ¢ —2¢° +¢° +4¢" —2¢8 + -
26.2.a.a 1 0208 Q -1 1 -3 -1 - -+ +q" -3 - -+
26.2.ab 1 0208 Q 1 -3 -1 1 - q+q -3¢ +q¢" — " -3¢ +q"+---
27.2.aa 1 0216 Q 0 0 o0 -1 - q—2¢" —q" +5¢° +4¢'6 — 7g"0 + -+
292aa 2 0232 Q2 2 2 -2 0 - g+ (-1+ B¢+ (1 - B¢ +(1-28)¢" +

— ap's start off negative [Farmer-Koutsoliotas 2016]
— Fricke sign tends to be —1 [M 2018, 2023]
— rationality (Fourier coefficient) field is often Q [misleading]
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[Il. Modular forms: counting by rationality field

@ Question: Fix K/Q. How many primitive minimal weight 2 f are
there with level N < X with Ky = K?

o Conjecture (Brumer—McGuinness 1990/Watkins 2008): ~ cX%/6 if

K=Q

Conjecture (Cowan—M)
If [K : Q] = d, this count is

finite
\

< X2/3+e d
< XV g
< X1/3+5 d
< x1/6+e d =
< X° d

d

Kimball Martin (OMU)
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