

Central L -values and functorial transfer: nonvanishing and congruences

Kimball Martin

The University of Oklahoma
Norman, Oklahoma

JMM 2017 (Atlanta)
Fri Jan 6

Motivation

\mathcal{E}/\mathbb{Q} - elliptic curve of conductor N

e.g., $\mathcal{E}_{17a1} : y^2 + xy + y = x^3 - x^2 - x - 14$ with $N = 17$

Functional equation:

$$L(1-s, \mathcal{E}) = \varepsilon(s, \mathcal{E}) L(s, \mathcal{E})$$

$$L(\frac{1}{2}, \mathcal{E}) = \varepsilon(\frac{1}{2}, \mathcal{E}) L(\frac{1}{2}, \mathcal{E})$$

$$\varepsilon(\frac{1}{2}, \mathcal{E}) = \pm 1 \text{ (root number)}$$

Conjecture (weak BSD)

$|\mathcal{E}(\mathbb{Q})| \text{ is finite} \iff L(\frac{1}{2}, \mathcal{E}) \neq 0.$

Kolyvagin: true if $\text{ord}_{s=\frac{1}{2}} L(s, \mathcal{E}) \leq 1$

General Problem

Problem: For (automorphic, self-dual) L -functions, study when $L(\frac{1}{2}, \pi) \neq 0$

Philosophy: Expect $L(\frac{1}{2}, \pi) = 0$ 50% of the time and $L(\frac{1}{2}, \pi) \neq 0$ 50% of the time (100% of time when $\varepsilon = +1$)

General Problem

Problem: For (automorphic, self-dual) L -functions, study when $L(\frac{1}{2}, \pi) \neq 0$

Philosophy: Expect $L(\frac{1}{2}, \pi) = 0$ 50% of the time and $L(\frac{1}{2}, \pi) \neq 0$ 50% of the time (100% of time when $\varepsilon = +1$)

A concrete conjecture

d - fundamental discriminant

$\chi_d(n) = \left(\frac{d}{n}\right)$ - quadratic Dirichlet character

\mathcal{E}^d - quadratic twist of \mathcal{E} by χ_d

Conjecture (Goldfeld)

Given \mathcal{E} , $L(\frac{1}{2}, \mathcal{E}^d) \neq 0$ for 50% of d and $L(\frac{1}{2}, \mathcal{E}^d) = 0$ (in fact $\text{ord}_{s=\frac{1}{2}} L(s, \mathcal{E}^d) = 1$) for 50% of d (ordered by absolute value)

Some partial results

Conjecture (Goldfeld)

Give \mathcal{E} , $L(\frac{1}{2}, \mathcal{E}^d) \neq 0$ for 50% of d and $L(\frac{1}{2}, \mathcal{E}^d) = 0$ (in fact $\text{ord}_{s=\frac{1}{2}} L(s, \mathcal{E}^d) = 1$) for 50% of d (ordered by absolute value)

Note: $\varepsilon(\frac{1}{2}, \mathcal{E}^d) = +1$ for 50% of d

James, Vatsal, ... : There exists \mathcal{E} such that $L(\frac{1}{2}, \mathcal{E}^d) \neq 0$ (resp. $\text{ord}_{s=\frac{1}{2}} L(s, \mathcal{E}^d) = 1$) for a positive proportion of d .

Ono–Skinner, ... : $L(\frac{1}{2}, \mathcal{E}^d) \neq 0$ for a “large zero proportion” of d

me? : $\mathcal{E} = \mathcal{E}_{17a1}$ and $d < 0$ prime. Then

$$L(\frac{1}{2}, \mathcal{E}^d) \neq 0 \iff \left(\frac{d}{17}\right) = -1 \quad (50\% \text{ of time})$$

Idea of proof

me? : $\mathcal{E} = \mathcal{E}_{17a1}$ and $d < 0$ prime. Then

$$L\left(\frac{1}{2}, \mathcal{E}^d\right) \neq 0 \iff \left(\frac{d}{17}\right) = -1 \quad (50\% \text{ of time})$$

Say $\mathcal{E} \leftrightarrow f \leftrightarrow \pi$

f - modular form

π - automorphic representation

Step 1. Relate $L\left(\frac{1}{2}, \mathcal{E}^d\right) = L\left(\frac{1}{2}, f \otimes \chi_d\right)$ to a **period** $P_d(\phi)$ on some $\pi' \xrightarrow{\text{JL}} \pi$ (Waldspurger, uses functoriality).

Step 2. Show $f \equiv E_{2,17} \pmod{2}$ (M., also uses functoriality), where $E_{2,17}$ is the weight 2, level 17 Eisenstein series

Step 3. Conclude $L^{\text{alg}}\left(\frac{1}{2}, f \otimes \chi_d\right) \equiv *L^{\text{alg}}\left(\frac{1}{2}, E_{2,17} \otimes \chi_d\right) \pmod{2}$ (Mazur, Vatsal, M., ...)

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done
- Siegel modular forms?

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done
- Siegel modular forms?
 - probably, at least for genus 2

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done
- Siegel modular forms?
 - probably, at least for genus 2
- self-dual automorphic forms of $GL(n)$?

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done
- Siegel modular forms?
 - probably, at least for genus 2
- self-dual automorphic forms of $GL(n)$?
 - hopefully, at least for certain families

Today's topic

Question: To what extent can we generalize these kinds of nonvanishing results to general automorphic forms?

For instance, generalize to:

- Hilbert modular forms?
 - already done
- Siegel modular forms?
 - probably, at least for genus 2
- self-dual automorphic forms of $GL(n)$?
 - hopefully, at least for certain families

Need to generalize:

1. relate L -values to periods
2. Hecke eigenvalue congruence with Eisenstein series
3. deduce nonvanishing of L -values (easy, won't elaborate)

Central L -values and periods: $\mathrm{GL}(2)$

π cusp aut rep of $G = \mathrm{PGL}(2) \simeq \mathrm{SO}(2, 1)$,

π' cusp aut rep of $G' = PB^\times \simeq \mathrm{SO}(3)$, B - quaternion algebra,

$\pi' \leftrightarrow \pi$

$H = K^1 / \{\pm 1\} \simeq \mathrm{SO}(2) \subset G'$, K/\mathbb{Q} - quadratic ($\leftrightarrow d$)

period $P_H : \pi' \rightarrow \mathbb{C}$, $P_H(\phi; \pi') = \int_H \phi(h) dh$

(finite sum if G' compact)

Theorem (Waldspurger)

$L(\tfrac{1}{2}, \pi \times 1_H) \neq 0 \iff P_H(\phi; \pi') \not\equiv 0 \text{ for some } \pi' \leftrightarrow \pi, \phi \in \pi'$

and in fact

$$|P_H(\phi; \pi')|^2 = c(\phi, \pi', H) L(\tfrac{1}{2}, \pi \times 1_H).$$

Here

$$L(\tfrac{1}{2}, \pi \times 1_H) = L(\tfrac{1}{2}, \pi) L(\tfrac{1}{2}, \pi \otimes \chi_d).$$

Central L -values and periods: $\mathrm{SO}(2n+1)$

π cusp aut rep of $G = \mathrm{SO}(n+1, n)$

π' cusp aut rep of $G' = \mathrm{SO}(2n+1)$, $\pi' \leftrightarrow \pi$

$H = \mathrm{SO}(2m)$ (compact) $\subset G'$

period $P_H : \pi' \rightarrow \mathbb{C}$, $P_H(\phi; \pi') = \int_{HN} \phi(hn) \psi_N(n) dh dn$

Conjecture (Gan–Gross–Prasad; Ichino–Ikeda–Liu)

$L(\tfrac{1}{2}, \pi \times 1_H) \neq 0 \iff P_H(\phi; \pi') \not\equiv 0$ for some $\pi' \leftrightarrow \pi, \phi \in \pi'$.

Moreover

$$|P_H(\phi; \pi')|^2 = c(\phi, \pi', H) L(\tfrac{1}{2}, \pi \times 1_H).$$

Theorem (Furusawa–Morimoto)

When $m = 1$, one direction and formula is true.

Theorem (Jiang–Zhang)

One direction of nonvanishing is true.

Eisenstein congruences for $\mathrm{GL}(2)$

Theorem (Mazur, 1977)

N - prime, $p \mid \frac{N-1}{12}$, $p \neq 2$, $\mathfrak{p} \mid p$ in $\overline{\mathbb{Q}}$

$E_{2,N}$ - Eisenstein series of weight 2 and level N

There exists a newform $f \in S_2(N)$ such that

$$f \equiv E_{2,N} \pmod{\mathfrak{p}}$$

- Ribet (~ 2010 , unpub) extended to squarefree N assuming $p \geq 5$, $p \nmid N$
- me: extended to N not a square, any p ; also for HMFs
- Billerey–Menares (2016): analogue for higher weight in prime level (p large)

Example of a congruence

Claim: $f \in S_2(17)$ satisfies $f \equiv E_{2,17} \pmod{2}$.

Proof.

$M_2(17) \simeq \text{DefQuatMF}(17)$ (JL corr)

$\text{DefQuatMF}(17) = \{\phi : \mathcal{O}(17) \rightarrow \mathbb{C}\}$, $\mathcal{O}(17) = \{\mathcal{I}_1, \mathcal{I}_2\}$

ϕ	$\phi(\mathcal{I}_1)$	$\phi(\mathcal{I}_2)$
$E_{2,17} \leftrightarrow \phi_0$	1	1
$f \leftrightarrow \phi_1$	3	-1

Note $\phi_0 \equiv \phi_1 \pmod{2}$.

More general congruences

G - reductive group/ \mathbb{Q} that $G(\mathbb{R})$ compact

(me) G form of $\mathrm{PGL}(2)$, i.e., $G = PB^\times$:

- if $p|m(\mathcal{O})$, get $\phi \equiv 1 \pmod{p}$ for quaternionic form ϕ
- by JL corr, get Eisenstein congruence

(me–Wakatsuki) G reductive:

- if $p|m(\Lambda)$, get $\phi \equiv 1 \pmod{p}$ for algebraic modular form ϕ
- will give Eisenstein congruences for split form G' once we know generalized JL corr (e.g., for genus 2 Siegel modular forms when $G \sim \mathrm{PGSp}(4)$)