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Weight 2 forms on the LMFDB

— a2, a3’s start off negative
— root number tends to be +1
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Weight 4 forms on the LMFDB

— a2’s start off negative
— root number tends to be +1
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Seeking explanations...

Farmer–Koutsoliotas (2016): The second Dirichlet coefficient starts out
negative
— L-functions from nothing approach, transient phenomenon
— similar argument says root numbers start out +1, known to be
transient for elliptic curves

Theorem 1 (strict bias of root numbers, M. 2018)

Fix k ∈ 2N, N squarefree. Then

dimSnew
k (N)+ ≥ dimSnew

k (N)−,

with equality only if (i) dimSnew
k (N) = 0; (ii) N = 2, 3; (iii) or k = 2 and

N = 37, 58. Moreover,

dimSnew
k (N)+ − dimSnew

k (N)− = cNhQ(
√
−N) − δk,2,

where cN ∈
{
1
2 , 1, 2

}
depends only on N mod 8.
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Root number bias: timeline

M. (2018): N squarefree =⇒

dimSnew
k (N)+ − dimSnew

k (N)− = cNhQ(
√
−N) − δk,2 ≥ 0

— uses trace formula for Atkin–Lehner operators

Pi–Qi (2021): k ≥ 4, N = M3, M squarefree =⇒

dimSnew
k (N)+ − dimSnew

k (N)− = cNφ(N)hQ(
√
−N) − δk,2 ≥ 0

— uses Petersson trace formula weighted by root numbers

Luo–Pi–Wu (2023): extends Pi–Qi to k ≥ 2 and Hilbert modular
forms (explicit over F = Q(

√
2),Q(

√
5))

— uses Jacquet–Zagier trace formula

M.: N arbitrary
— uses trace formula for Atkin–Lehner operators
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Root number bias: general levels

Theorem 2 (M.)

1 If (a) N 6= M2, M squarefree, or (b) k ≤ 10 or k = 14, then there is
a strict root number bias towards +1:

dimSnew
k (N)+ ≥ dimSnew

k (N)−.

2 If N 6= M2, 2M2, 3M2, 4M2, M squarefree, then

dimSnew
k (N)+ − dimSnew

k (N)− = bNhQ(
√
−N) − δk,2δN,1 ≥ 0.

3 For any fixed k, dimSnew
k (N)+ ≥ dimSnew

k (N)− for all but finitely
many N .

4 If N = M2, M squarefree and k � N , then

(−1)k/2+ω(M)(dimSnew
k (N)+ − dimSnew

k (N)−) ≥ 0.
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Root number bias: proof ingredients

WN - Fricke involution on Sk(N)
If f is a newform with root number wf = ±1,

WNf = (−1)k/2wff

Hence

(−1)k/2trSnew
k (N)WN = dimSnew

k (N)+ − dimSnew
k (N)−

Yamauchi (1973)/Skoruppa–Zagier (1988): trace formula for
trSk(N)WMT`
` = 1, M = N > 4 relatively simple:

trSk(N)WN = (−1)k/2
1

2

∑
M |N,N/M∈�

µ(
√
N/M)H(−4M) + δk,2,

H(D) - Hurwitz class number (weighted count of pos. def. BQFs/∼)
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Root number bias: proof

trSk(N)WN = (−1)k/2
1

2

∑
M |N,N/M∈�

µ(
√
N/M)H(−4M) + δk,2

Proof. Compute trSnew
k (N)WN via

subtract off contribution from oldforms (nothing to do if N is
squarefree!)

; alternating sum of alternating sums

use class number relations to get positive multiple of hQ(
√
−N), apart

from some exceptional cases when N = M2, M squarefree

Remarks on exceptional cases:

1 trSnew
k (N)WN < 0 in exceptional cases comes from subtracting off the

oldform contribution from Sk(1)

2 Half of exceptional cases disappear if you exclude twists from level 1
forms (when # {p | N : p ≡ 3 mod 4} is odd)
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Why a bias towards root number +1?

Handwaving with the adelic trace formula when k = 2:

trR(h)
(h test function)

=
∑
γ

Iγ(h)

geom. orbital integrals

=
∑
π

Jπ(h)

spectral distributions

Locally, −WN is a “positive” double coset operator Kp

(
1

pe

)
Kp

trR(h) = trMk(N)(−WN ) for h ≈ char. fun. of some set
(Can actually take h to be char. fun. on def. quat. alg., at least if
vp(N) = 1 for some p)

Hence geometric side is positive

Expect most of contribution to trR(h) comes from Snew
k (N)
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A bias for Hecke eigenvalues

Farmer–Koutsoliotas (2016): a2 starts off negative (with positive root
number, N small)

Theorem 3 (M–Pharis (2022))

N squarefree, (p,N) = 1, N � p. Then∗

trSnew
k (N)±Tp ∼ ±

1

4
p(k−2)/2H(4pN).

— use Yamauchi/Skoruppa–Zagier trace formula
— point: trace formula for TpWN is similar to that for T1WN when
p� N
— ap tends to be positive for positive root number (N large)
— N squarefree can be relaxed

∗Errata at: https://math.ou.edu/~kmartin/papers/aprank-err.pdf
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Murmurations, following [HLOP]

Averages of a`’s on Snew
2 (N)+ as function of `/2000, where

— N prime, 1000 < N < 2000
— 1 ≤ ` < 1000 (composite or prime), (N, `) = 1

Averages initially positive because of bias for `� N

*Disclaimer for all figures: code has not been thoroughly tested
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Biases and murmurations

Biases in dimension formulas for trace formulas indicative of biases in
trT`’s for `� N

Biases in trT`’s for `� N harbinger for murmurations

Source of bias (and murmurations?) in trace formula when N squarefree,
(`,N) = 1, ` prime:

trSk(N)WNT` = −1

2
(−`)

k−2
2 H(−4`N) + δk,2σ1(`) (N > 4`)

trSk(N)T` = −1

2

∑
s2≤4`

pk(s, `)
∑
t|N

Ht(s
2 − 4`M ′) − d(N) + δk,2σ1(`).
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Local biases?

N = p1 . . . pr - squarefree.
wf = (−1)k/2wp1(f) · · ·wpr(f)
— wp(f) - p-th AL eigenvalue of f
— p ‖ N =⇒ wp(f) determines
(i) whether ap > 0, and
(ii) local ramified representation πp(f) (Steinberg or unram quad twist)

Theorem 4 (M. 2018)

1 There is a bias to/against wp1 = · · · = wpt = −1 based on parity of
r + k

2

2 For fixed primes p1, . . . , pt, have perfect equidistribution among
AL-eigenspaces under congruence conditions on p | NM , where
M = p1 . . . pt

Ex: t = 2: look at eigenspaces for signs ++, +−, −+, −−
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Where are the biases?

Can look for global biases and local biases

Significant biases for dimensions and a`’s:

X Root number

WM -sign, M | N , M � `,
e.g., πp - Steinberg vs unramified twist, p� ` (M = p ‖ N)

Certain classes of πp ramified dihedral s.c. (p2j+1 ‖ N) (Knightly...)

L-value weighted averages
(Michel–Ramakrishnan 2012, Feigon–Whitehouse 2009, M. 2022)

Perfect equidistribution/little bias for dimension:

Varying Atkin–Lehner signs for small p ‖ N (with cong.)

Root number for p-minimal forms, p2j ‖ N (with cong.),
i.e., πp - unramified dihedral supercuspidal

Kimball Martin (OU) Biases of modular forms Murmurations in Arithmetic 14 / 20



Averages of T`’s in Snew
2 (2p) on AL subspace

Wp+ subspace W2+ subspace

— N = 2p, 2000 < N < 4000
— ` < 2000 prime, (N, `) = 1
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Averages of T`’s in Snew
2 (5p) on AL subspace

Wp+ subspace W5+ subspace

— N = 5p, 5000 < N < 10000
— ` < 5000 prime, (N, `) = 1
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Where are the biases?

Can look for global biases and local biases

Significant biases for dimensions and a`’s:

X Root number

X WM -sign, M | N , M � `,
e.g., πp - Steinberg vs unramified twist, p� ` (M = p ‖ N)

Certain classes of πp ramified dihedral s.c. (p2j+1 ‖ N) (Knightly...)

L-value weighted averages
(Michel–Ramakrishnan 2012, Feigon–Whitehouse 2009, M. 2022)

Perfect equidistribution/little bias for dimension:

X Varying Atkin–Lehner signs for small p ‖ N (with cong.)

Root number for p-minimal forms, p2j ‖ N (with cong.),
i.e., πp - unramified dihedral supercuspidal
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L-value weighted averages of a`’s

Sums of
2
√
Du2D
4π × L(1,f)L(1,f,χD)

〈f,f〉 a`(f) over S2(N), where

— D = −3, N prime inert in K = Q(
√
D), 2000 < N < 4000

— ` < 8000
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L-value weighted averages of ap’s

Sums of
2
√
Du2D
4π × L(1,f)L(1,f,χD)

〈f,f〉 ap(f) where

— D = −3, N prime inert in K = Q(
√
D), 2000 < N < 4000

— p < 8000 prime, split and inert in K
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Michel–Ramakrishnan exact average when k = 2,Ψ = 1

D ≡ 3 mod 4, K = Q(
√
−D)

hD = hK , uD = 1
2 |o
×
K |

N - prime inert in K

2
√
Du2D
4π

∑
f∈S2(N) new

L(1, f)L(1, f, χD)

〈f, f〉
a`(f) =

12h2D
N − 1

σN (`) + uDr(`D)hD + u2D

`D/N∑
n=1

Φ(n,N)

— σN (`) =
∑

d|`, (d,N)=1 d
— r(`D) = number of ideals of norm `D in oK
— Φ(n,N) - involves ideal counts and Legendre polynomial
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