Biases of modular forms from the trace formula

Kimball Martin

The University of Oklahoma

Murmurations in Arithmetic, ICERM July 6–8, 2023

Kimball Martin (OU)

Biases of modular forms

Murmurations in Arithmetic 1 / 20

l abel	Dim	4	Field	Traces				Fricke sign	a-expansion
Laber	Dim	4	Tielu	a_2	a_3	a_5	a_7	There sign	q-expansion
11.2.a.a	1	0.088	Q	$^{-2}$	$^{-1}$	1	$^{-2}$	-	$q-2q^2-q^3+2q^4+q^5+2q^6-2q^7+\cdots$
14.2.a.a	1	0.112	Q	$^{-1}$	$^{-2}$	0	1	-	$q-q^2-2q^3+q^4+2q^6+q^7-q^8+\cdots$
15.2.a.a	1	0.120	Q	$^{-1}$	$^{-1}$	1	0	-	$q-q^2-q^3-q^4+q^5+q^6+3q^8+\cdots$
17.2.a.a	1	0.136	Q	-1	0	$^{-2}$	4	-	$q-q^2-q^4-2q^5+4q^7+3q^8-3q^9+\cdots$
19.2.a.a	1	0.152	Q	0	$^{-2}$	3	$^{-1}$	-	$q-2q^3-2q^4+3q^5-q^7+q^9+3q^{11}+\cdots$
20.2.a.a	1	0.160	Q	0	$^{-2}$	$^{-1}$	2	-	$q-2q^3-q^5+2q^7+q^9+2q^{13}+\cdots$
21.2.a.a	1	0.168	Q	$^{-1}$	1	$^{-2}$	$^{-1}$	-	$q-q^2+q^3-q^4-2q^5-q^6-q^7+\cdots$
23.2.a.a	2	0.184	$\mathbb{Q}(\sqrt{5})$	$^{-1}$	0	$^{-2}$	2	-	$q-eta q^2+(-1+2eta)q^3+(-1+eta)q^4+\cdots$
24.2.a.a	1	0.192	Q	0	$^{-1}$	$^{-2}$	0	-	$q-q^3-2q^5+q^9+4q^{11}-2q^{13}+\cdots$
26.2.a.a	1	0.208	Q	$^{-1}$	1	$^{-3}$	$^{-1}$	-	$q-q^2+q^3+q^4-3q^5-q^6-q^7+\cdots$
26.2.a.b	1	0.208	Q	1	$^{-3}$	$^{-1}$	1	-	$q+q^2-3q^3+q^4-q^5-3q^6+q^7+\cdots$
27.2.a.a	1	0.216	Q	0	0	0	$^{-1}$	-	$q-2q^4-q^7+5q^{13}+4q^{16}-7q^{19}+\cdots$
29.2.a.a	2	0.232	$\mathbb{Q}(\sqrt{2})$	$^{-2}$	2	$^{-2}$	0	-	$q + (-1 + \beta)q^2 + (1 - \beta)q^3 + (1 - 2\beta)q^4 + \\$

- a_2, a_3 's start off negative
- root number tends to be +1

Label	Dim	4	Field		Tra	ces		Fricke sign	a-expansion
Laber	Dim	A		a_2	a_3	a_5	a_7	There aight	<u>q</u> -expansion
5.4.a.a	1	0.295	Q	-4	2	$^{-5}$	6	+	$q-4q^2+2q^3+8q^4-5q^5-8q^6+\cdots$
6.4.a.a	1	0.354	Q	$^{-2}$	$^{-3}$	6	-16	+	$q-2q^2-3q^3+4q^4+6q^5+6q^6+\cdots$
7.4.a.a	1	0.413	Q	$^{-1}$	$^{-2}$	16	-7	+	$q-q^2-2q^3-7q^4+2^4q^5+2q^6+\cdots$
8.4.a.a	1	0.472	Q	0	$^{-4}$	$^{-2}$	24	+	$q-4q^3-2q^5+24q^7-11q^9-44q^{11}+\cdot$
9.4.a.a	1	0.531	Q	0	0	0	20	+	$q-8q^4+20q^7-70q^{13}+2^6q^{16}+\cdots$
10.4.a.a	1	0.590	Q	2	-8	5	$^{-4}$	+	$q+2q^2-8q^3+4q^4+5q^5-2^4q^6+\cdots$
11.4.a.a	2	0.649	$\mathbb{Q}(\sqrt{3})$	2	$^{-2}$	2	20	+	$q + (1 + eta)q^2 + (-1 - 4eta)q^3 + (-4 + 2eta)q^3$
12.4.a.a	1	0.708	Q	0	3	-18	8	+	$q+3q^3-18q^5+8q^7+9q^9+6^2q^{11}+\cdots$
13.4.a.a	1	0.767	Q	$^{-5}$	-7	-7	-13	-	$q-5q^2-7q^3+17q^4-7q^5+35q^6+\cdots$
13.4.a.b	2	0.767	$\mathbb{Q}(\sqrt{17})$	1	5	$^{-3}$	-9	+	$q+eta q^2+(4-3eta)q^3+(-4+eta)q^4+\cdot\cdot$
14.4.a.a	1	0.826	Q	$^{-2}$	8	$^{-14}$	-7	+	$q-2q^2+8q^3+4q^4-14q^5-2^4q^6+\cdots$
14.4.a.b	1	0.826	Q	2	$^{-2}$	-12	7	+	$q+2q^2-2q^3+4q^4-12q^5-4q^6+\cdots$
15.4.a.a	1	0.885	Q	1	3	5	$^{-24}$	+	$q+q^2+3q^3-7q^4+5q^5+3q^6+\cdots$
15.4.a.b	1	0.885	Q	3	$^{-3}$	$^{-5}$	20	+	$q + 3q^2 - 3q^3 + q^4 - 5q^5 - 9q^6 + \cdots$

- a_2 's start off negative
- root number tends to be +1

Seeking explanations...

Farmer–Koutsoliotas (2016): The second Dirichlet coefficient starts out negative

— L-functions from nothing approach, transient phenomenon

— similar argument says root numbers start out +1, known to be transient for elliptic curves

Theorem 1 (strict bias of root numbers, M. 2018)

Fix $k \in 2\mathbb{N}$, N squarefree. Then

 $\dim S_k^{\text{new}}(N)^+ \ge \dim S_k^{\text{new}}(N)^-,$

with equality only if (i) dim $S_k^{\text{new}}(N) = 0$; (ii) N = 2,3; (iii) or k = 2 and N = 37,58. Moreover,

$$\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^- = c_N h_{\mathbb{Q}(\sqrt{-N})} - \delta_{k,2},$$

where $c_N \in \left\{\frac{1}{2}, 1, 2\right\}$ depends only on $N \mod 8$.

Root number bias: timeline

• M. (2018): N squarefree \implies

 $\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^- = c_N h_{\mathbb{Q}(\sqrt{-N})} - \delta_{k,2} \ge 0$

- uses trace formula for Atkin-Lehner operators

• Pi–Qi (2021):
$$k \geq 4, N = M^3$$
, M squarefree \implies

 $\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^- = c_N \phi(N) h_{\mathbb{Q}(\sqrt{-N})} - \delta_{k,2} \ge 0$

- uses Petersson trace formula weighted by root numbers

- Luo-Pi-Wu (2023): extends Pi-Qi to $k \ge 2$ and Hilbert modular forms (explicit over $F = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5})$)
 - uses Jacquet-Zagier trace formula
- M.: N arbitrary
 - uses trace formula for Atkin-Lehner operators

Theorem 2 (M.)

If (a) N ≠ M², M squarefree, or (b) k ≤ 10 or k = 14, then there is a strict root number bias towards +1:

 $\dim S_k^{\text{new}}(N)^+ \ge \dim S_k^{\text{new}}(N)^-.$

2 If $N \neq M^2, 2M^2, 3M^2, 4M^2$, M squarefree, then

 $\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^- = b_N h_{\mathbb{Q}(\sqrt{-N})} - \delta_{k,2} \delta_{N,1} \ge 0.$

- For any fixed k, $\dim S_k^{\text{new}}(N)^+ \ge \dim S_k^{\text{new}}(N)^-$ for all but finitely many N.
- If $N = M^2$, M squarefree and $k \gg N$, then

 $(-1)^{k/2+\omega(M)}(\dim S_k^{\text{new}}(N)^+ - \dim S_k^{\text{new}}(N)^-) \ge 0.$

3

6 / 20

Root number bias: proof ingredients

 W_N - Fricke involution on $S_k(N)$ If f is a newform with root number $w_f = \pm 1$,

$$W_N f = (-1)^{k/2} w_f f$$

Hence

$$(-1)^{k/2} \operatorname{tr}_{S_k^{\operatorname{new}}(N)} W_N = \dim S_k^{\operatorname{new}}(N)^+ - \dim S_k^{\operatorname{new}}(N)^-$$

Yamauchi (1973)/Skoruppa–Zagier (1988): trace formula for $\operatorname{tr}_{S_k(N)} W_M T_\ell$ $\ell = 1, M = N > 4$ relatively simple:

$$\operatorname{tr}_{S_k(N)} W_N = (-1)^{k/2} \frac{1}{2} \sum_{M \mid N, N/M \in \Box} \mu(\sqrt{N/M}) H(-4M) + \delta_{k,2},$$

H(D) - Hurwitz class number (weighted count of pos. def. ${\rm BQFs}/{\sim})$

Root number bias: proof

$$\operatorname{tr}_{S_k(N)} W_N = (-1)^{k/2} \frac{1}{2} \sum_{M \mid N, N/M \in \Box} \mu(\sqrt{N/M}) H(-4M) + \delta_{k,2}$$

Proof. Compute $\operatorname{tr}_{S_k^{\operatorname{new}}(N)} W_N$ via

- subtract off contribution from oldforms (nothing to do if N is squarefree!)
- $\bullet \rightsquigarrow$ alternating sum of alternating sums
- use class number relations to get positive multiple of $h_{\mathbb{Q}(\sqrt{-N})}$, apart from some exceptional cases when $N=M^2$, M squarefree

Remarks on exceptional cases:

- $tr_{S_k^{new}(N)}W_N < 0$ in exceptional cases comes from subtracting off the oldform contribution from $S_k(1)$
- e Half of exceptional cases disappear if you exclude twists from level 1 forms (when # {p | N : p ≡ 3 mod 4} is odd)

Handwaving with the adelic trace formula when k = 2:

$$\mathop{\rm tr} R(h) _{(h \ {\rm test \ function})} = \sum_{\gamma} I_{\gamma}(h) = \sum_{\pi} J_{\pi}(h) \\ {\rm geom. \ orbital \ integrals} \quad {\rm spectral \ distributions}$$

• Locally, $-W_N$ is a "positive" double coset operator $K_p \begin{pmatrix} 1 \\ p^e \end{pmatrix} K_p$

- $\operatorname{tr} R(h) = \operatorname{tr}_{M_k(N)}(-W_N)$ for $h \approx$ char. fun. of some set (Can actually take h to be char. fun. on def. quat. alg., at least if $v_p(N) = 1$ for some p)
- Hence geometric side is positive
- Expect most of contribution to trR(h) comes from $S_k^{new}(N)$

Farmer–Koutsoliotas (2016): a_2 starts off negative (with positive root number, N small)

Theorem 3 (M–Pharis (2022))

N squarefree, $(p,N)=1,\ N\gg p.$ Then*

$$\operatorname{tr}_{S_k^{\operatorname{new}}(N)} \pm T_p \sim \pm \frac{1}{4} p^{(k-2)/2} H(4pN).$$

- use Yamauchi/Skoruppa–Zagier trace formula
- point: trace formula for $T_p W_N$ is similar to that for $T_1 W_N$ when $p \ll N$
- a_p tends to be *positive* for positive root number (N large)
- N squarefree can be relaxed

*Errata at: https://math.ou.edu/~kmartin/papers/aprank-err.pdf 🗈 🛌 🕤 🔍

Murmurations, following [HLOP]

Averages of a_ℓ 's on $S_2^{\rm new}(N)^+$ as function of $\ell/2000$, where — N prime, 1000 < N < 2000

- $1 \le \ell < 1000$ (composite or prime), $(N, \ell) = 1$
 - \bullet Averages initially positive because of bias for $\ell \ll N$

*Disclaimer for all figures: code has not been thoroughly tested.

Kimball Martin (OU)

Biases of modular forms

Biases and murmurations

- Biases in dimension formulas for trace formulas indicative of biases in ${\rm tr}\, T_\ell$'s for $\ell \ll N$
- Biases in $\operatorname{tr} T_{\ell}$'s for $\ell \ll N$ harbinger for murmurations

Source of bias (and murmurations?) in trace formula when N squarefree, $(\ell,N)=1,~\ell$ prime:

$$\operatorname{tr}_{S_k(N)} W_N T_\ell = -\frac{1}{2} (-\ell)^{\frac{k-2}{2}} H(-4\ell N) + \delta_{k,2} \sigma_1(\ell) \qquad (N > 4\ell)$$

$$\operatorname{tr}_{S_k(N)} T_{\ell} = -\frac{1}{2} \sum_{s^2 \le 4\ell} p_k(s,\ell) \sum_{t|N} H_t(s^2 - 4\ell M') - d(N) + \delta_{k,2} \sigma_1(\ell).$$

Local biases?

$$\begin{split} N &= p_1 \dots p_r \text{ - squarefree.} \\ w_f &= (-1)^{k/2} w_{p_1}(f) \cdots w_{p_r}(f) \\ &- w_p(f) \text{ - } p\text{-th AL eigenvalue of } f \\ &- p \parallel N \implies w_p(f) \text{ determines} \\ (i) \text{ whether } a_p > 0, \text{ and} \\ (ii) \text{ local ramified representation } \pi_p(f) \text{ (Steinberg or unram quad twist)} \end{split}$$

Theorem 4 (M. 2018)

- O There is a bias to/against w_{p1} = · · · = w_{pt} = −1 based on parity of r + ^k/₂
- For fixed primes p_1, \ldots, p_t , have perfect equidistribution among AL-eigenspaces under congruence conditions on $p \mid \frac{N}{M}$, where $M = p_1 \ldots p_t$

Ex: t = 2: look at eigenspaces for signs ++, +-, -+, --

Can look for global biases and local biases

Significant biases for dimensions and a_{ℓ} 's:

- \checkmark Root number
- W_M -sign, $M \mid N, M \gg \ell$, e.g., π_p - Steinberg vs unramified twist, $p \gg \ell$ ($M = p \parallel N$)
- Certain classes of π_p ramified dihedral s.c. $(p^{2j+1} \parallel N)$ (Knightly...)
- L-value weighted averages (Michel–Ramakrishnan 2012, Feigon–Whitehouse 2009, M. 2022)

Perfect equidistribution/little bias for dimension:

• Varying Atkin–Lehner signs for small $p \parallel N$ (with cong.)

• Root number for p-minimal forms, $p^{2j} \parallel N$ (with cong.), i.e., π_p - unramified dihedral supercuspidal

A = 5 A

Averages of T_ℓ 's in $S_2^{new}(2p)$ on AL subspace

 $W_p + \text{ subspace}$ — N = 2p, 2000 < N < 4000— $\ell < 2000$ prime, $(N, \ell) = 1$ W_2 + subspace

Averages of T_ℓ 's in $S_2^{new}(5p)$ on AL subspace

 W_p + subspace

 W_5 + subspace

- N = 5p, 5000 < N < 10000- $\ell < 5000$ prime, $(N, \ell) = 1$ Can look for global biases and local biases

Significant biases for dimensions and a_{ℓ} 's:

- $\checkmark \ \mathsf{Root} \ \mathsf{number}$
- ✓ W_M -sign, $M \mid N, M \gg \ell$, e.g., π_p - Steinberg vs unramified twist, $p \gg \ell$ ($M = p \parallel N$)
- Certain classes of π_p ramified dihedral s.c. $(p^{2j+1} \parallel N)$ (Knightly...)
- L-value weighted averages (Michel-Ramakrishnan 2012, Feigon-Whitehouse 2009, M. 2022)

Perfect equidistribution/little bias for dimension:

✓ Varying Atkin–Lehner signs for small $p \parallel N$ (with cong.)

• Root number for *p*-minimal forms, $p^{2j} \parallel N$ (with cong.), i.e., π_p - unramified dihedral supercuspidal

→ 3 → 4 3

L-value weighted averages of a_ℓ 's

Sums of $\frac{2\sqrt{D}u_D^2}{4\pi} \times \frac{L(1,f)L(1,f,\chi_D)}{\langle f,f \rangle} a_\ell(f)$ over $S_2(N)$, where -D = -3, N prime inert in $K = \mathbb{Q}(\sqrt{D})$, 2000 < N < 4000 $-\ell < 8000$

Kimball Martin (OU)

L-value weighted averages of a_p 's

Sums of $\frac{2\sqrt{D}u_D^2}{4\pi} \times \frac{L(1,f)L(1,f,\chi_D)}{\langle f,f \rangle} a_p(f)$ where -D = -3, N prime inert in $K = \mathbb{Q}(\sqrt{D})$, 2000 < N < 4000-p < 8000 prime, split and inert in K

Kimball Martin (OU)

Michel–Ramakrishnan exact average when $k = 2, \Psi = 1$

$$D \equiv 3 \mod 4, \ K = \mathbb{Q}(\sqrt{-D})$$

$$h_D = h_K, \ u_D = \frac{1}{2}|\mathfrak{o}_K^{\times}|$$

$$N \text{ - prime inert in } K$$

$$\begin{aligned} \frac{2\sqrt{D}u_D^2}{4\pi} \sum_{f \in S_2(N) \text{ new}} \frac{L(1,f)L(1,f,\chi_D)}{\langle f,f \rangle} a_\ell(f) = \\ \frac{12h_D^2}{N-1} \sigma_N(\ell) + u_D r(\ell D)h_D + u_D^2 \sum_{n=1}^{\ell D/N} \Phi(n,N) \end{aligned}$$

$$\begin{split} & - \sigma_N(\ell) = \sum_{d|\ell, (d,N)=1} d \\ & - r(\ell D) = \text{number of ideals of norm } \ell D \text{ in } \mathfrak{o}_K \\ & - \Phi(n,N) \text{ - involves ideal counts and Legendre polynomial} \end{split}$$