## Counting abelian surfaces with RM

Kimball Martin

The University of Oklahoma \*Visiting MIT/Harvard in Spring 2022

April 10, 2022

(joint work with Alex Cowan, Harvard)

k - field

E/k - elliptic curve: curve that is an (abelian) group  $\left(E(k),O,+\right)$ 

- smooth planar cubic curve:\*  $y^2 = x^3 + ax + b$ , O point at infinity
- ullet smooth projective curve of genus 1, O some distinguished point

• if 
$$k = \mathbb{C}$$
:  $E = \mathbb{C}/\Lambda$ ,  $O = 0$ 

### Theorem (Modularity, WTWBCDT)

For any elliptic curve  $E/\mathbb{Q}$ , there exists a weight 2 rational newform  $f = \sum a_n q^n$  such that L(s, E) = L(s, f).

The map  $\{E\}$  /isomorphism  $\rightarrow$   $\{f\}$  is many-to-1 The map  $\{E\}$  /isogeny  $\rightarrow$   $\{f\}$  is a bijection

\*if char  $k \neq 2, 3$ 

#### Question

How to enumerate elliptic curves  $E/\mathbb{Q}$  up to a given bound?

 $E: y^2 = x^3 + ax + b$ How to order?

- Order by coefficient height:  $|a| \leq A$ ,  $|b| \leq B$  (a, b not unique for E)
- Order by **discriminant**:  $\Delta = -16(4a^3 + 27b^2)$  ( $\Delta$  not unique for E)
- Order by **conductor**  $N \in \mathbb{N}$  (unique)

Cremona's algorithm to enumerate with N < X:

- Enumerate rational newforms f in  $S_2(N)$  for N < X
- 2 Compute periods of f to construct an  $E \leftrightarrow f$  (cond (E) = N)
- Sind all  $E' \sim E$  ( $\sim$ : isogenous)

# Asymptotic counts of elliptic curves

#### Question

How many elliptic curves  $E/\mathbb{Q}$  are there (up to isomorphism)?

E has a unique reduced minimal model over  $\mathbb{Z}$ :

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \quad a_{1}, a_{3}, \pm a_{2} \in \{0, 1\}$$

$$\begin{split} \Delta(E) &\approx -64a_4^3 - 432a_6^2 \\ \bullet \ |\Delta(E)| < cX \text{ if } a_4 < X^{1/3} \text{ and } a_6 < X^{1/2}. \\ \bullet \ (\text{at least) about } X^{1/3}X^{1/2} = X^{5/6} \text{ choices for } (a_4, a_6) \text{ give } \\ |\Delta(E)| < cX \end{split}$$

#### Conjecture (Brumer-McGuiness, Watkins)

The number of elliptic curves/isomorphism with (min. integral)  $\Delta$  or N < X is  $\sim cX^{5/6}$ .

#### Agrees well with numerics

Kimball Martin (OU)

#### Modularity expectations:

| abelian varieties | automorphic | forms  |  |
|-------------------|-------------|--------|--|
| elliptic curves   | GL(2)       |        |  |
| abelian surfaces  | GL(2)       | GSp(4) |  |
|                   |             |        |  |

We'll restrict to (P)GL(2) type:  $X_0(N) = \Gamma_0(N) \backslash \overline{\mathfrak{H}}$  - modular curve

#### Question 1

How does  $J_0(N) = \text{Jac}(X_0(N))$  decompose into simple abelian varieties?

The answer for varying N will tell us about counting elliptic curves, abelian surfaces of PGL(2)-type, ...

# Eichler–Shimura theory

 $f\in S_2(N)$  newform  $\leadsto$  simple abelian variety  $A_f=J_0(N)/I_fJ_0(N)$ 

• 
$$A_f \sim A_g \iff f = g^{\sigma} \text{ (for some } \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\text{)}$$

- dim  $A_f = [K_f : \mathbb{Q}]$ ,  $K_f = \mathbb{Q}(\{a_n(f)\})$  rationality field
- $\operatorname{End}^{0}(A_{f}) = K_{f}$  (abelian variety is of GL(2)-type)
- $\operatorname{cond}(A_f) = N^{\dim A_f}$

$$J_0(N) \sim J_0^{\text{old}}(N) \oplus J_0^{\text{new}}(N)$$

$$J_0^{\mathrm{new}}(N) \sim \bigoplus_{\{\mathrm{newforms } f\}/\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} A_f$$

• Understanding simple factors of (new part of)  $J_0(N) \leftrightarrow$ understanding Galois orbits of newforms in  $S_2(N)$ 

## An example

• 
$$S_2(35) = S_2(35)^{\text{new}}$$
 has 3 newforms:  
 $f(z) = q + q^3 - 2q^4 - q^5 + q^7 + \dots,$   
 $g_1(z) = q - \frac{1 + \sqrt{17}}{2}q^2 - \frac{1 - \sqrt{17}}{2}q^3 + \frac{5 + \sqrt{17}}{2}q^4 + q^5 + \dots,$   
 $g_2(z) = q - \frac{1 - \sqrt{17}}{2}q^2 - \frac{1 + \sqrt{17}}{2}q^3 + \frac{5 - \sqrt{17}}{2}q^4 + q^5 + \dots,$   
 $g_1, g_2$  Galois conjugate  $\rightsquigarrow 2$  orbits:  $\{f\}$  and  $\{g_1, g_2\}$   
•  $f \leftrightarrow$  elliptic curve  $E_{35a1} : y^2 + y = x^3 + x^2 - 131x - 650$   
 $A_f \sim E_{35a1}$   
•  $g_1, g_2 \leftrightarrow$  genus 2 curve (with RM 17)  
 $C : y^2 = x^6 + 2x^5 + x^4 + 8x^3 + 4x^2 + 4x + 8$   
 $A_{g_1} \sim A_{g_2} \sim \text{Jac}(C)$  (abelian surface of condutor  $35^2$ )  
•  $J_0(35) = J_0(35)^{\text{new}} \sim E_{35a1} \oplus \text{Jac}(C)$ 

イロト イヨト イヨト イヨト

Question 1': How does  $J_0^{\rm new}(N)$  decompose into simple abelian varieties? is equivalent to

#### Question 2

How does  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  act the set of newforms  $\{f_1, \ldots, f_m\}$  in  $S_2(N)$ ?

— sizes of Galois orbits tells us degrees of  $K_f$ 's [hard] — exact action tells us rationality fields  $K_f = \mathbb{Q}((a_n))$  [very hard!]

#### Conjecture 1 (M, 2021)

 $N = p_1 \dots p_r$  squarefree. 100% of the time (r fixed,  $N \to \infty$ )  $S_2^{\text{new}}(N)$  has  $2^r$  Galois orbits, i.e.,  $J_0^{\text{new}}(N)$  has  $2^r$  simple factors.

For 100% of N, expect no small orbits/abelian varieties...

#### Question 3

Fix  $d \ge 1$ . How many Galois orbits of size d in  $S_2^{\text{new}}(N)$ , i.e., simple  $J_0^{\text{new}}(N)$  factors of dimension d, are there for N < X.

• Brumer–McGuiness/Watkins -  $O(X^{5/6})$  for d = 1

Heuristics + data for prime  $N \rightsquigarrow$ 

### Conjecture 2 (Cowan–M)

The number of Galois orbits of a fixed size d in  $S_2^{\text{new}}(N)$ , for N < X squarefree, is  $O(X^{1-\frac{d}{6}+\varepsilon})$ . In particular if  $d \ge 7$ , it is finite.

# Random Hecke polynomial model

For a newform f, typically  $K_f = \mathbb{Q}(a_p)$  for any p(K. Murty (1999), Koo–Stein–Wiese (2008))

- Model the number and sizes of Galois orbits of newforms in  $S_k(N)$  by the factorization type of the characteristic polynomial of  $T_p$  on  $S_k(N)$
- Model the characteristic polynomial of  $T_p$  on each AL-eigenspace of dimension n as a random element of any of the following sets:
  - deg n monic polynomials in  $\mathbb{Z}[x]$  with roots  $\leq 2p^{\frac{k-1}{2}}$
  - Weil q-polynomials of degree 2n,  $q = p^{\frac{k}{2}}$
  - isogeny classes of n-dimensional abelian varieties over  $\mathbb{F}_q$
- $h(n) = h_{k,p}(n)$  size of above set Probablity of degree d factor is  $\approx \frac{h(n-d)}{h(n)}$ 
  - precise asymptotics for h(n) as  $n \to \infty$  are hard
  - fit model elliptic curve counts:  $\frac{h(n-1)}{h(n)} \approx c n^{-1/6}$

$$\rightsquigarrow \frac{h(n-d)}{h(n)} \approx c^d n^{-d/6}$$





Question: Is  $X^{2/3}$  the right asymptotic in Conjecture 2 for d = 2?

For d = 1, get  $X^{5/6}$  by using minimal integral equations for elliptic curves.

For d = 2, want to estimate number of abelian surfaces/genus 2 curves with real multiplication (RM). Hard to understand RM from Weierstrass equations  $y^2 = f(x)$ .

### Conjecture 3 (Cowan–M)

For N squarefree, 100% of the size 2 Galois orbits  $\{f, f^{\sigma}\}$  have rationality field  $K_f = \mathbb{Q}(\sqrt{5})$ .

Equivalently, 100% of abelian surfaces  $A/\mathbb{Q}$  with RM (at least with conductor  $N^2$ , N squarefree) have RM 5 (i.e.,  $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] \subset \operatorname{End}_{\mathbb{Q}}(A)$ ).

 $\therefore$  in Conjecture 2 for d = 2, can restrict to RM 5

・ロト ・同ト ・ヨト ・ヨト

# Degree 2, discriminant 5 data



Kimball Martin (OU)

... AS w/RM

April 10, 2022

# Elkies–Kumar model for $Y_{-}(5)$

Hilbert modular surface  $Y_{-}(5)$  parametrizes PPASs with RM 5:

$$z^{2} = 2(-972g^{5} - 324g^{4} - 27g^{3} - 4500g^{2}h - 1350gh + 6250h^{2} - 108h)$$

birational to  $\mathbb{P}^2_{m,n}$  via

$$g = -\frac{1}{30}(-m^2 + 5n^2 + 9)$$
  

$$h = \frac{1}{12500}(m^5 - 10m^3n^2 + 25mn^4 + 5m^4 - 50m^2n^2 + 125n^4)$$
  

$$-5m^3 + 25mn^2 - 45m^2 + 225n^2 + 108)$$

Igusa–Clebsch invariants in  $\mathbb{P}^4_{(1,2,3,5)}$ :

$$(I_2: I_4: I_6: I_{10}) = (24g + 6: 9g^2: 81g^3 + 18g^2 + 36h: 4h^2)$$

 $\begin{array}{l} C: y^2 = f(x) \text{ - rational genus 2 curve with RM 5} \\ \rightsquigarrow A = \operatorname{Jac}(C) \text{ rational PPAS with RM 5} \\ \rightsquigarrow \text{ rational } (z,g,h) \text{ or } (m,n) \text{ on } Y_-(5) \end{array}$ 

**Question:** When does a rational (z, g, h) on  $Y_{-}(5)$  correspond to rational C, i.e., C has IC-invariants  $(I_2: I_4: I_6: I_{10}) = (24g + 6: 9g^2: 81g^3 + 18g^2 + 36h: 4h^2)?$ 

**Answer:**  $\iff h \neq 0$  and the *Mestre obstruction* vanishes.

Mestre obstruction: Mestre conic  $L = L(I_2, I_4, I_6, I_{10})$  needs to have a rational point

### Mestre conic

 $L: -189843750 (96 g^3 + 337 g^2 + 108 g - 400 h + 9) x^2$  $+5062500 (144 g^4 + 1299 g^3 + 754 g^2 - 2000 gh + 144 g - 500 h + 9) xy$  $-3750(1944 q^{5} + 40905 q^{4} + 36990 q^{3} - 68400 q^{2}h + 11835 q^{2} - 43200 qh$  $+50000 h^{2} + 1620 q - 5400 h + 81) u^{2}$  $-7500 (1944 g^5 + 40905 g^4 + 36990 g^3 - 68400 q^2 h + 11835 q^2 - 43200 a h$  $+50000 h^{2} + 1620 q - 5400 h + 81)xz$  $+900(324g^{6}+14931g^{5}+19395g^{4}-25800g^{3}h+9105g^{3}-30100g^{2}h$  $+2020 q^{2} - 8400 qh + 10000 h^{2} + 216 q - 700 h + 9)yz$  $-(2916 q^7 + 283338 q^6 + 499041 q^5 - 496800 q^4 h + 319140 q^4$  $-915300 q^{3}h+525000 q^{2}h^{2}+101160 q^{3}-426300 q^{2}h+500000 qh^{2}+17214 q^{2}$  $-76800 gh + 100000 h^{2} + 1512 g - 4800 h + 54)z^{2}$ 

Disc: 
$$2^6 \cdot 3^3 \cdot 5^{22} \cdot h^2 (-9g^2 + 8h)^2 z^2$$

### Theorem 1 (Cowan–M)

Generically, the rational (z, g, h) or (m, n)'s on  $Y_{-}(5)$  corresponding to rational genus 2 C with (rational) RM 5 are those satisfying  $30g + 4 = m^2 - 5n^2 - 5 \in \mathbb{Q}$  is a norm from  $\mathbb{Q}(\sqrt{5})$ 

#### Proof.

- After calculating many curves of small height, guess that the Mestre obstruction only depends on g.
- After more calculations, guess the Mestre conic is equivalent to  $x^2 5y^2 (30g + 4)z^2$ . (It's not over  $\mathbb{Q}(g, h)$ !)
- Spend months trying to reduce the Mestre conic.

Future goals: use this to estimate counts of PPAS/genus 2 curves with RM by discriminant and conductor.

Kimball Martin (OU)

... AS w/RM

 $D = 5: (262144) \cdot (m^5 - 10m^3n^2 + 25mn^4 + 5m^4 - 50m^2n^2 + 125n^4 - 5m^3 + 5m^4 - 5m^4$  $25mn^2 - 45m^2 + 225n^2 + 108)^2$  $D = 8: \left(-\frac{1}{131072}\right) \cdot (m+1) \cdot (m-1)^3 \cdot (2n^2 - 1)^{-5} \cdot (-16m^2n^2 + 32n^4 + m^3 - 16n^2n^2 + 32n^2 + 16n^2n^2 + 32n^2 + 16n^2n^2 + 32n^2 + 16n^2n^2 +$  $56mn^2 + 9m^2 - 72n^2 + 27m + 27)^2$  $D = 12: (-32) \cdot (n+1)^3 \cdot (n-1)^4 \cdot (-m^2 + 27n^2 - 27)^{-3} \cdot (mn^2 + 9n^2 - 8)^3$ D = 13:  $\left(\frac{256}{4782969}\right) \cdot (-12m^3 + 3m^2 + n^2)^{-6} \cdot (267m^3 - 72m^2n + mn^2 + 3552m^2 - 12m^2n + 32m^2 + 32m^$  $1440mn + 128n^2 - 768m)^2 \cdot (-m^3 - 150m^2 + 6mn - 264m + 120n + 64)^4$ D = 17:  $\left(\frac{1024}{4782969}\right) \cdot (-132m + n + 3)^3 \cdot (456m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8n + 24)^3 \cdot (4608m^3 - 66m^2 + mn + 723m - 8m + 723m + 8m + 723m - 8m + 723m - 8m + 723m - 8m + 723m + 723m - 8m +$  $1728m^{2} + n^{2} + 216m - 9)^{-8} \cdot (-256m^{3} - 1200m^{2} + 18mn - 6006m + 99n + 41)^{5}$