Distribution of rationality fields

Kimball Martin

The University of Oklahoma

36th Automorphic Forms Workshop Oklahoma State University May 21, 2024

(joint with Alex Cowan)

Kimball Martin (OU)

Distribution of rationality fields

36th AFW 1 / 11

Level 1

 $f = \sum a_n q^n \in S_k(1) \text{ - newform (normalized eigenform)}$ $K_f = \mathbb{Q}(\{a_n\}_n) \text{ - rationality field (number field)}$ Galois action on newforms $\implies [K_f : \mathbb{Q}] \leq \dim S_k(1)$

Examples

$$k = 12: q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \dots$$

$$k = 16, 18, 20, 22, 26 - similar$$

$$k = 24:$$

$$q + (540 - \alpha)q^{2} + (169740 + 48\alpha)q^{3} + (12663328 - 1080\alpha)q^{4} + \dots$$

$$\alpha = 12\sqrt{144169}$$

Conjecture (Maeda's conjecture, 1997)

All newforms in $S_k(1)$ are Galois conjugate. Equivalently, every rationality field has degree $d = \dim S_k(1)$.

< ロト < 同ト < ヨト < ヨト

Fixed level

 $N=p_1\dots p_m$ - squarefree (for simplicity) $f\in S_k^{\rm new}(N)$ - newform

Typically $[K_f : \mathbb{Q}] < \dim S_k^{\text{new}}(N)$. Why?

Atkin–Lehner operators W_{p_1},\ldots,W_{p_m} give Galois-stable decomposition

$$S_k^{\rm new}(N) = \bigoplus_{\varepsilon} S_k^{\rm new}(N)^{\varepsilon}$$

 $\varepsilon = (\varepsilon_{p_1}, \dots, \varepsilon_{p_m})$ - sign pattern ($\varepsilon_{p_i} = \pm 1$) $S_k^{\text{new}}(N)^{\varepsilon}$ - Atkin-Lehner eigenspace (joint kernel of each $W_{p_i} - \varepsilon_{p_i}$)

Conjecture (Tsaknias' generalized Maeda conjecture, 2014) For $k \gg_N 0$, all newforms in each $S_k^{\text{new}}(N)^{\varepsilon}$ are Galois conjugate.

Weight 2 newforms on the LMFDB

Label	Dim	A	Field	Traces				Ericke sign	a-expansion
				a_2	a_3	a_5	a_7	Flicke sign	<i>q</i> -expansion
11.2.a.a	1	0.088	Q	$^{-2}$	$^{-1}$	1	$^{-2}$	-	$q-2q^2-q^3+2q^4+q^5+2q^6-2q^7+\cdots$
14.2.a.a	1	0.112	Q	$^{-1}$	$^{-2}$	0	1	-	$q-q^2-2q^3+q^4+2q^6+q^7-q^8+\cdots$
15.2.a.a	1	0.120	Q	$^{-1}$	$^{-1}$	1	0	-	$q-q^2-q^3-q^4+q^5+q^6+3q^8+\cdots$
17.2.a.a	1	0.136	Q	-1	0	$^{-2}$	4	-	$q-q^2-q^4-2q^5+4q^7+3q^8-3q^9+\cdots$
19.2.a.a	1	0.152	Q	0	$^{-2}$	3	$^{-1}$	-	$q-2q^3-2q^4+3q^5-q^7+q^9+3q^{11}+\cdots$
20.2.a.a	1	0.160	Q	0	$^{-2}$	$^{-1}$	2	-	$q-2q^3-q^5+2q^7+q^9+2q^{13}+\cdots$
21.2.a.a	1	0.168	Q	$^{-1}$	1	$^{-2}$	$^{-1}$	-	$q-q^2+q^3-q^4-2q^5-q^6-q^7+\cdots$
23.2.a.a	2	0.184	$\mathbb{Q}(\sqrt{5})$	$^{-1}$	0	$^{-2}$	2	-	$q-eta q^2+(-1+2eta)q^3+(-1+eta)q^4+\cdots$
24.2.a.a	1	0.192	Q	0	$^{-1}$	$^{-2}$	0	-	$q-q^3-2q^5+q^9+4q^{11}-2q^{13}+\cdots$
26.2.a.a	1	0.208	Q	$^{-1}$	1	-3	$^{-1}$	-	$q-q^2+q^3+q^4-3q^5-q^6-q^7+\cdots$
26.2.a.b	1	0.208	Q	1	$^{-3}$	$^{-1}$	1	-	$q+q^2-3q^3+q^4-q^5-3q^6+q^7+\cdots$
27.2.a.a	1	0.216	Q	0	0	0	$^{-1}$	-	$q-2q^4-q^7+5q^{13}+4q^{16}-7q^{19}+\cdots$
29.2.a.a	2	0.232	$\mathbb{Q}(\sqrt{2})$	$^{-2}$	2	$^{-2}$	0	-	$q+(-1+\beta)q^2+(1-\beta)q^3+(1-2\beta)q^4+\\$

rational $(K_f = \mathbb{Q})$ newforms \longleftrightarrow elliptic curves $\implies K_f = \mathbb{Q}$ occurs infinitely often (but should be 0% of the time)

Typical decomposition for fixed weight

Conjecture (Lipnowski-Shaeffer, 2020)

As (squarefree) $N \to \infty$, $\max \{ [K_f : \mathbb{Q}] \} \sim \dim S_k^{\text{new}}(N)^{\varepsilon}$.

Conjecture 1 (M., 2021)

As (squarefree) $N \to \infty$, on average (in particular, 100% of the time) each Atkin–Lehner eigenspace has a single Galois orbit.

Conjecture (Brumer-McGuinness, Watkins)

The number of elliptic curves with (squarefree or arbitrary) conductor N < X grows like $cX^{5/6}$.

Conjecture 2 (Cowan–M)

Fix d and restrict to squarefree levels N. Then

{newforms $f \in S_2(N) : N < X, [K_f : \mathbb{Q}] = d$ } = $O(X^{1-d/6+\varepsilon})$.

In particular, this is count is finite if d > 6.

— conjectural upper bound based on random Hecke polynomial model and data for prime N<2,000,000

— actual count should be infinite if d=2,3, probably d=4; not clear for d=5,6

Comparisons to upper bounds for prime level

Prime level versions ($N < 2.0 \times 10^6$) of:

d=2 count divided by $X^{2/3}$ d=3 count divided by $X^{1/2}$

Counting specific rationality fields

Shimura $+\varepsilon$

{newforms
$$f \in S_2(N) : K_f = K$$
} \longleftrightarrow
{abelian varieties $A : d = \dim A = [K : \mathbb{Q}], N_A = N^d, \operatorname{End}^0_{\mathbb{Q}}(A) = K$ }
 $\operatorname{End}^0_{\mathbb{Q}}(A) = K$ means A has **real multiplication (RM)** by K (or $\mathcal{O} \subset K$)
Moduli spaces
Modular curve $X_0(1) \sim \operatorname{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$

$$\{\text{ell. curves}/\mathbb{Q}\} \longleftrightarrow X_0(1)(\mathbb{Q})$$

Hilbert modular varieties $Y_{d,K,\varepsilon}$

$$\{d\text{-dim AVs } A/\mathbb{Q} \text{ with RM by } K+\varepsilon\} \longrightarrow Y_{d,K,\varepsilon}(\mathbb{Q})$$

The most common quadratic rationality field

Counting rational points on Hilbert modular surfaces (d=2) \rightsquigarrow

Conjecture 3 (Cowan–M)

Among weight 2 newforms with $[K_f : \mathbb{Q}] = 2$, 100% have $K_f = \mathbb{Q}(\sqrt{5})$.

Using constructions of genus 2 curves with RM $\mathbb{Q}(\sqrt{5})$ (by Brumer) and RM $\mathbb{Q}(\sqrt{2})$ (by Mestre) \leadsto

Proposition 4 (Cowan–M)

If we do not restrict to squarefree N, we have the lower bounds

$$\#\left\{\text{new, min } f \in S_2(N) : N < X, K_f = \mathbb{Q}(\sqrt{5})\right\} \gg X^{1/3}$$

$$\#\left\{\textit{new, min } f \in S_2(N) : N < X, K_f = \mathbb{Q}(\sqrt{2})\right\} \gg X^{2/7}$$

Cowan–Frengley–M: constructions of genus 2 curves with RM $\mathbb{Q}(\sqrt{D})$ for D = 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 44, 53, 61 $\stackrel{?}{\Longrightarrow}$ lower bounds for such $\mathbb{Q}(\sqrt{D})$

Question

What quadratic fields occur as rationality fields of weight k newforms?

Conjecture 5

Only finitely many quadratic fields occur (for all k).

LMFDB searches for maximal discriminants:

$$k = 2: \ \mathbb{Q}(\sqrt{145}) \ (N = 3300)$$

$$k = 4: \ \mathbb{Q}(\sqrt{8761}) \ (N = 1050)$$

$$k = 6: \ \mathbb{Q}(\sqrt{176089}) \ (N = 210)$$

 $k = 60: \mathbb{Q}(\sqrt{659795887180768515473539681}) (N = 6)$