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Level 1

f =
∑
anq

n ∈ Sk(1) - newform (normalized eigenform)
Kf = Q({an}n) - rationality field (number field)
Galois action on newforms =⇒ [Kf : Q] ≤ dimSk(1)

Examples

k = 12: q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + . . .
k = 16, 18, 20, 22, 26 - similar

k = 24:
q + (540− α)q2 + (169740 + 48α)q3 + (12663328− 1080α)q4 + . . .
α = 12

√
144169

Conjecture (Maeda’s conjecture, 1997)

All newforms in Sk(1) are Galois conjugate. Equivalently, every rationality
field has degree d = dimSk(1).
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Fixed level

N = p1 . . . pm - squarefree (for simplicity)
f ∈ Snew

k (N) - newform

Typically [Kf : Q] < dimSnew
k (N). Why?

Atkin–Lehner operators Wp1 , . . . ,Wpm give Galois-stable decomposition

Snew
k (N) =

⊕
ε

Snew
k (N)ε

ε = (εp1 , . . . , εpm) - sign pattern (εpi = ±1)
Snew
k (N)ε – Atkin-Lehner eigenspace (joint kernel of each Wpi − εpi)

Conjecture (Tsaknias’ generalized Maeda conjecture, 2014)

For k �N 0, all newforms in each Snew
k (N)ε are Galois conjugate.
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Weight 2 newforms on the LMFDB

rational (Kf = Q) newforms ←→ elliptic curves
=⇒ Kf = Q occurs infinitely often (but should be 0% of the time)
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Typical decomposition for fixed weight

Conjecture (Lipnowski–Shaeffer, 2020)

As (squarefree) N →∞, max {[Kf : Q]} ∼ dimSnew
k (N)ε.

Conjecture 1 (M., 2021)

As (squarefree) N →∞, on average (in particular, 100% of the time)
each Atkin–Lehner eigenspace has a single Galois orbit.
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Counting rationality field degrees in weight 2

Conjecture (Brumer–McGuinness, Watkins)

The number of elliptic curves with (squarefree or arbitrary) conductor
N < X grows like cX5/6.

Conjecture 2 (Cowan–M)

Fix d and restrict to squarefree levels N . Then

# {newforms f ∈ S2(N) : N < X, [Kf : Q] = d} = O(X1−d/6+ε).

In particular, this is count is finite if d > 6.

— conjectural upper bound based on random Hecke polynomial model and
data for prime N < 2, 000, 000
— actual count should be infinite if d = 2, 3, probably d = 4; not clear for
d = 5, 6
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Comparisons to upper bounds for prime level

Prime level versions (N < 2.0× 106) of:

d = 2 count divided by X2/3 d = 3 count divided by X1/2

Kimball Martin (OU) Distribution of rationality fields 36th AFW 7 / 11



Counting specific rationality fields

Shimura +ε

{newforms f ∈ S2(N) : Kf = K} ←→{
abelian varieties A : d = dimA = [K : Q], NA = Nd, End0Q(A) = K

}
End0Q(A) = K means A has real multiplication (RM) by K (or O ⊂ K)

Moduli spaces
Modular curve X0(1) ∼ SL2(Z)\H

{ell. curves/Q} ←→ X0(1)(Q)

Hilbert modular varieties Yd,K,ε

{d-dim AVs A/Q with RM by K + ε} −→ Yd,K,ε(Q)
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The most common quadratic rationality field

Counting rational points on Hilbert modular surfaces (d = 2) ;

Conjecture 3 (Cowan–M)

Among weight 2 newforms with [Kf : Q] = 2, 100% have Kf = Q(
√
5).
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Lower bounds for quadratic fields

Using constructions of genus 2 curves with RM Q(
√
5) (by Brumer) and

RM Q(
√
2) (by Mestre) ;

Proposition 4 (Cowan–M)

If we do not restrict to squarefree N , we have the lower bounds

#
{

new, min f ∈ S2(N) : N < X,Kf = Q(
√
5)
}
� X1/3

#
{

new, min f ∈ S2(N) : N < X,Kf = Q(
√
2)
}
� X2/7

Cowan–Frengley–M: constructions of genus 2 curves with RM Q(
√
D) for

D = 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 44, 53, 61
?

=⇒ lower bounds for such Q(
√
D)
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What quadratic fields arise

Question

What quadratic fields occur as rationality fields of weight k newforms?

Conjecture 5

Only finitely many quadratic fields occur (for all k).

LMFDB searches for maximal discriminants:

k = 2: Q(
√
145) (N = 3300)

k = 4: Q(
√
8761) (N = 1050)

k = 6: Q(
√
176089) (N = 210)

...
k = 60: Q(

√
659795887180768515473539681) (N = 6)
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