
Summary of representations of G = GL(2, q)

We first summarize the results we proved in detail on non-cuspidal representations of
G = GL(2, q) (q a power of a prime p), mostly following Piatetski-Shapiro’s Complex
representations of GL(2,K) for finite fields K. Proposition numbers, etc. here correspond
to those is Piatetski-Shapiro, though my formulations are not always exactly the same as
Piatetski-Shapiro’s. Then we give a brief description of the cuspidal representations.

Notation: B =

 
⇤ ⇤

⇤

!
is the standard Borel subgroup of G, U =

 
1 ⇤

1

!
is its unipotent

radical, D =

 
⇤

⇤

!
is the diagonal subgroup, w =

 
1

1

!
. Then U is normalized by D,

so B = U oD, and we have the Bruhat decomposition G = B tBwB. The two B-double
cosets B and BwB are called Bruhat cells.
It is easy to see that |B| = (q � 1)2q, [G : B] = q + 1 and |G| = (q � 1)2q(q + 1).

Proposition 5.1. The conjugacy classes of G consists of the following 4 families:

1. the q � 1 classes represented by c1(↵) =

 
↵

↵

!
, ↵ 2 F

⇥
q ;

2. the q � 1 classes represented by c2(↵) =

 
↵ 1

↵

!
, ↵ 2 F

⇥
q ;

3. the 1
2(q�1)(q�2) classes represented by c3(↵,�) =

 
↵

�

!
, ↵,� 2 F

⇥
q , ↵ 6= � (here

c3(↵,�) ⇠ c3(�,↵)); and

4. the 1
2(q

2 � q) classes represented by c4(↵) =

 
�N(↵)

1 tr↵

!
, where ↵ 2 Fq2 � Fq.

Theorem 7.1. The irreducible representations of B are classified as

1. (q � 1)2 1-dimensional representations of the form µ(

 
a b

d

!
) = µ1(a)µ2(d), where

µ1, µ2 are 1-dimensional characters of F

⇥
q . We will also write µ = (µ1, µ2) for this

character.

2. (q � 1) representation of dimension q � 1, which are monomial, induced from 1-
dimensions of the subgroup ZU following the construction in Serre, Section 8.2.



Note if ⇢ is a (q�1)-dimensional representation of B, then its induction to G has dimension
(q � 1)(q + 1) >

p
|G|, so the induction cannot be irreducible. However, we can construct

many irreducibles of G by inducing 1-dimensionals of B.
A principal series representation of G is a representation of the form µ̂ = ⇡(µ1, µ2) :=

IndGBµ for a 1-dimensional representation µ = (µ1, µ2) of B. Necessarily dim µ̂ = q + 1.
For a representation ⇢ of G, we defined the Jacquet module J(⇢) = ⇢U = {v 2 ⇢ : ⇢(u)v = u 8u 2 U}.
Using the fact that dim J(µ̂) = 2 and dim J(⇢) > 0 if and only if ⇢|B contains some 1-
dimensional µ we proved the following. An irreducible representation ⇢ of G is a component
of some principal series µ̂ if and only if J(⇢) 6= 0 (Corollary 8.4). Further if µ̂ is reducible,
then it has precisely 2 irreducible components, a 1-dimensional and a q-dimensional (Corol-
lary 8.5, Lemma 8.9(a)).

Theorem 8.12. A principal series µ̂ = ⇡(µ1, µ2) is irreducible if and only if µ1 6= µ2.
Moreover, two principal series ⇡(µ1, µ2),⇡(µ0

1, µ
0
2) are isomorphic if and only if {µ1, µ2} =

{µ0
1, µ

0
2}.

We call a representation ⇢ of G cuspidal if J(⇢) = 0. Note ⇡(1, 1) ' 1�St where St is an
irreducible q-dimensional representation. We call St the Steinberg representation of G.

Exercise 1. For � a character of F⇥
q , show ⇡(µ1, µ2)⌦ (� � det) = ⇡(µ1�, µ2�).

Theorem 8.13. The irreducible representations of G are as follows:

1. the (q � 1) 1-dimensional representations � � det, � : F⇥
q ! C;

2. the (q � 1) q-dimensional representations St⌦ (� � det), � : F⇥
q ! C;

3. the 1
2(q � 1)(q � 2) (q + 1)-dimensional irreducible principal series ⇡(µ1, µ2) where

µ1, µ2 is an unordered pair of distinct charaters of F⇥
q ;

4. the 1
2(q

2 � q) irreducible cuspidal representations of G.

Recall that the 1-dimensional representations of a finite group G are precisely the repre-
sentations that factor through the derived (i.e., commutator) subgroup G0 = [G,G]. For
q > 2, all 1-dimensionals factor through the normal subgroup SL(2, q) (which is the kernel
of det), GL(2, q)/SL(2, q) ' F

⇥
q has order q � 1, this means SL(2, q) is the commutator

subgroup of GL(2, q) (Corollary 8.14). (When q = 2, GL(2, 2) = SL(2, 2) ' S3, and the
commutator subgroup is C3. Here there is 1 irreducible cuspidal representation, which is
also 1-dimensional.)

Proposition 10.2. Every irreducible cuspidal representation ⇢ of G has dimension q � 1.



Proof. Since J(⇢) = 0, the restriction of ⇢ to B cannot contain any 1-dimensionals. Theorem
7.1 implies that dim ⇢ is a multiple of (q � 1). But counting dimensions implies each
dim ⇢ = q � 1.

For brevity, we deviate from Piatetski-Shapiro’s treatment and describe the cuspidal repre-
sentations of G following Chapter 6 of Bushnell–Henniart’s The local Langlands conjecture
for GL(2).
We may view Fq2 as a 2-dimensional Fq-vector space. Left multiplication by F

⇥
q2 thus gives

a 2-dimensional Fq-representation, i.e., an embedding of Fq2 as a subgroup T of GL(2, q).
To be explicit, for any quadratic extension of fields E/F with E = F [

p
�] for some � 2 F⇥,

we may embed E into M2(F ) via

a+ b
p
� 7!

 
a �b

b a

!
, a, b 2 F.

Thus we may regard

T =

( 
a �b

b a

!
: (a, b) 2 F ⇥ F � {(0, 0)}

)
,

where � 2 F

⇥
q is a non-square.

Let ✓ : T ! C

⇥ be a 1-dimensional representation of T ' F

⇥
q2 . We say ✓ is regular if

✓ 6= ✓, where x 7! x is the Galois involution for Fq2/Fq, i.e., x = xq. Hence ✓ is regular
if ✓q 6= ✓. The group of characters of T is isomorphic to F

⇥
q2 ' Cq2�1, and a character ✓

will be regular if and only ✓q�1 = 1, i.e., if and only if it has order dividing q � 1, i.e., if
and only if it factors through a character of the cyclic quotient Cq�1 of Cq2�1. Thus there
are (q2 � 1) � (q � 1) = q2 � q regular characters, and they occur in pairs (✓, ✓). In other
words, there are 1

2(q
2 � q) Galois orbits of regular characters of T . These will parametrize

the cuspidal representations of G.
Fix a non-trivial character  of U . Consider the character ✓ : ZU ! C

⇥ given by

✓ (

 
a

a

!
u) = ✓(a) (u) for a 2 F

⇥
q , u 2 U . (So ✓ only depends on the restriction of ✓

to Z ' F

⇥
q .)

Theorem A.

1. For a regular character ✓ of T , we have IndGZU✓ = IndGT ✓ � ⇡✓ for an irreducible
(q � 1)-dimensional cuspidal representation ⇡✓ of G;



2. For two regular characters ✓, ✓0 of T , ⇡✓ ' ⇡✓0 if and only if ✓0 2
�
✓, ✓

 
; and

3. The representations {⇡✓} for ✓ a regular character of T exhaust the irreducible cuspidal
representations of G.

Proof. The last part follows from the first 2 parts, which one can show by computing
the characters of IndGZU✓ , IndGT ✓ and letting �✓ be the difference. Then one checks that
(�✓,�✓) = 1, which means �✓ is the character of an irreducible representation of G which
we call ⇡✓, and checking �✓(1) = q � 1 means that ⇡✓ has dimension q � 1 and therefore is
cuspidal. For the second part, one calculates that (�✓,�✓0) = 1 only if ✓0 2

�
✓, ✓

 
.

Notice that this description does not directly construct cuspidal representations, and for
more general groups (e.g., GL(n), SL(n), SO(n)...) the cuspidal representations (e.g., for
GL(n), those which are not induced from some block upper-triangular subgroup) are not
easy to construct explicitly. For GL(n), the irreducible cuspidal representations will be
parametrized by Galois orbits of regular characters of F⇥

qn . However, at least for GL(2, q) one
can construct the cuspidal representations in a more explicit way—see Piatetski-Shapiro’s
book, or Section 4.1 of Bump’s Automorphic forms and representations for a construction
using the Weil representation.

Exercise 2. Show the the character formulas:

�✓(c1(↵)) = (q � 1)✓(↵)

�✓(c2(↵)) = �✓(↵)

�✓(c3(↵,�)) = 0

�✓(c4(↵)) = �(✓(↵) + ✓(↵)).

Exercise 3. Using the above exercise, complete the details of the proof of Theorem A.

Exercise 4. Describe the full character table for GL(2, q) by computing the characters of
the non-cuspidal irreducible representations of G.

Now you might notice the families of irreducible representations of G in parallel the families
of conjugacy classes of G. One might wonder if there is a “natural” way to elicit a bijection
between these two sets. I will discuss this more in lecture.


