Summary of representations of G = GL(2,q)

We first summarize the results we proved in detail on non-cuspidal representations of
G = GL(2,q) (¢ a power of a prime p), mostly following Piatetski-Shapiro’s Complex
representations of GL(2, K) for finite fields K. Proposition numbers, etc. here correspond
to those is Piatetski-Shapiro, though my formulations are not always exactly the same as

Piatetski-Shapiro’s. Then we give a brief description of the cuspidal representations.

* ok 1 =%
Notation: B = < ) is the standard Borel subgroup of G, U = ( 1) is its unipotent
*

*
so B =U x D, and we have the Bruhat decomposition G = B U BwB. The two B-double

cosets B and BwB are called Bruhat cells.
It is easy to see that |B| = (¢ — 1)%q, [G: B] = ¢+ 1 and |G| = (¢ — 1)%q(q + 1).

1
radical, D = <* is the diagonal subgroup, w = . . Then U is normalized by D,

Proposition 5.1. The conjugacy classes of G consists of the following 4 families:

1. the ¢ — 1 classes represented by c¢1(a) = (a ) , a € F
!
a 1

2. the g — 1 classes represented by ca(a) = ( ) ,a € Fr
a

3. the $(q—1)(¢—2) classes represented by c3(a, 8) = <a ﬁ), a,B €Fy, a# B (here

cs(a, B) ~ c3(B, )); and

—N(a)

, where v € F 2 — IF.
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4. the %(q2 — q) classes represented by c4(a) = (

Theorem 7.1. The irreducible representations of B are classified as

b
1. (g — 1)? 1-dimensional representations of the form u( <a d>) = p1(a)pe(d), where

pi1, pi2 are 1-dimensional characters of F. We will also write p = (p1, pu2) for this

character.

2. (¢ — 1) representation of dimension ¢ — 1, which are monomial, induced from 1-

dimensions of the subgroup ZU following the construction in Serre, Section 8.2.



Note if p is a (¢ — 1)-dimensional representation of B, then its induction to G has dimension
(g —1)(g+1) > /]G], so the induction cannot be irreducible. However, we can construct
many irreducibles of G by inducing 1-dimensionals of B.

A principal series representation of G is a representation of the form i = m(u, p2) =
IndGp for a 1-dimensional representation p = (u1, p2) of B. Necessarily dim i = g + 1.
For a representation p of G, we defined the Jacquet module J(p) = pV = {v € p: p(u)v = uVu € U}.
Using the fact that dim J(4) = 2 and dim J(p) > 0 if and only if p|p contains some 1-
dimensional p we proved the following. An irreducible representation p of G is a component
of some principal series 1 if and only if J(p) # 0 (Corollary 8.4). Further if /i is reducible,
then it has precisely 2 irreducible components, a 1-dimensional and a ¢-dimensional (Corol-
lary 8.5, Lemma 8.9(a)).

Theorem 8.12. A principal series i = m(uy, p2) is irreducible if and only if 1 # po.
Moreover, two principal series m(u1, u2), w(u}, pb) are isomorphic if and only if {p1, po} =

{1, 5}
We call a representation p of G cuspidal if J(p) = 0. Note 7(1,1) ~ 1 & St where St is an

irreducible g-dimensional representation. We call St the Steinberg representation of G.
Exercise 1. For x a character of F, show 7(u1, p2) ® (x o det) = m(p1x, p2x)-

Theorem 8.13. The irreducible representations of G are as follows:
1. the (¢ — 1) 1-dimensional representations x o det, x : F* — C;
2. the (¢ — 1) g-dimensional representations St @ (x o det), x : F — C;

3. the (¢ — 1)(g — 2) (¢ + 1)-dimensional irreducible principal series m(u1, p12) where

p1, p2 is an unordered pair of distinct charaters of Fy;
4. the %(q2 — q) irreducible cuspidal representations of G.

Recall that the 1-dimensional representations of a finite group G are precisely the repre-
sentations that factor through the derived (i.e., commutator) subgroup G’ = [G,G]. For
g > 2, all 1-dimensionals factor through the normal subgroup SL(2,¢q) (which is the kernel
of det), GL(2,q)/SL(2,q) ~ F; has order ¢ — 1, this means SL(2,q) is the commutator
subgroup of GL(2,q) (Corollary 8.14). (When ¢ = 2, GL(2,2) = SL(2,2) ~ S3, and the
commutator subgroup is Cs. Here there is 1 irreducible cuspidal representation, which is

also 1-dimensional.)

Proposition 10.2. Every irreducible cuspidal representation p of G has dimension ¢ — 1.



Proof. Since J(p) = 0, the restriction of p to B cannot contain any 1-dimensionals. Theorem
7.1 implies that dimp is a multiple of (¢ — 1). But counting dimensions implies each

dimp=g¢q—1. O

For brevity, we deviate from Piatetski-Shapiro’s treatment and describe the cuspidal repre-
sentations of G following Chapter 6 of Bushnell-Henniart’s The local Langlands conjecture
for GL(2).

We may view F 2 as a 2-dimensional Fg-vector space. Left multiplication by FqXQ thus gives
a 2-dimensional F,-representation, i.e., an embedding of ;2 as a subgroup 7" of GL(2,q).
To be explicit, for any quadratic extension of fields E/F with E = F[v/4] for some § € F*,
we may embed E into My(F') via

0b
a+b\/5|—>(z ), a,beF.

a

Thus we may regard

T = {(Z (Z’> : (a,b) eFxF{(o,o)}},

where ¢ € F is a non-square.

;2. We say 6 is regular if

0 # 0, where x — T is the Galois involution for Fp2/Fg, ie., T = 29 Hence 0 is regular

Let # : T — C* be a 1-dimensional representation of T ~ F

if 67 £ 0. The group of characters of T' is isomorphic to IF;2 ~ Cp2_1, and a character ¢
will be regular if and only 891 = 1, i.e., if and only if it has order dividing ¢ — 1, i.e., if
and only if it factors through a character of the cyclic quotient Cy—1 of Cp2_;. Thus there
are (¢> — 1) — (¢ — 1) = ¢% — ¢ regular characters, and they occur in pairs (#,6). In other
words, there are %(q2 — ¢) Galois orbits of regular characters of T'. These will parametrize
the cuspidal representations of G.

Fix a non-trivial character i) of U. Consider the character 0, : ZU — C* given by

0 (a ) u) = 0(a)y(u) for a € F, u € U. (So 0y only depends on the restriction of 0
a
to Z ~TFx.)

Theorem A.

1. For a regular character 6 of T, we have InngHw = Ind$6 @ my for an irreducible

(¢ — 1)-dimensional cuspidal representation mg of G;



2. For two regular characters 0,60 of T, my ~ g if and only if 0’ € { 9,@}; and

3. The representations {7y} for 6 a regular character of T" exhaust the irreducible cuspidal

representations of G.

Proof. The last part follows from the first 2 parts, which one can show by computing
the characters of IndCZ;er, Ind$0 and letting xp be the difference. Then one checks that
(xo, xo) = 1, which means yy is the character of an irreducible representation of G which
we call mg, and checking (1) = ¢ — 1 means that my has dimension ¢ — 1 and therefore is

cuspidal. For the second part, one calculates that (xg, xg) =1 only if §' € {0,9}. O

Notice that this description does not directly construct cuspidal representations, and for
more general groups (e.g., GL(n), SL(n), SO(n)...) the cuspidal representations (e.g., for
GL(n), those which are not induced from some block upper-triangular subgroup) are not
easy to construct explicitly. For GL(n), the irreducible cuspidal representations will be
parametrized by Galois orbits of regular characters of ]F;n. However, at least for GL(2, ¢) one
can construct the cuspidal representations in a more explicit way—see Piatetski-Shapiro’s
book, or Section 4.1 of Bump’s Automorphic forms and representations for a construction

using the Weil representation.

Exercise 2. Show the the character formulas:

xo(c1(a)) = (g —1)0()

xo(c2(a)) = —0(a)
xo(cs(a, 8)) =0

xo(ca(@)) = —(B(a) + 0(@)).

Exercise 3. Using the above exercise, complete the details of the proof of Theorem A.

Exercise 4. Describe the full character table for GL(2,¢) by computing the characters of

the non-cuspidal irreducible representations of G.

Now you might notice the families of irreducible representations of G in parallel the families
of conjugacy classes of G. One might wonder if there is a “natural” way to elicit a bijection

between these two sets. I will discuss this more in lecture.



