Abstract

Let F be a number field and $\rho : \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_n(\mathbb{C})$ be a continuous, irreducible representation. Artin conjectured that if ρ is non-trivial, then the associated L-function $L(s,\rho)$ is entire. Langlands generalized this conjecture by asserting that there should be a cuspidal automorphic representation π of $\operatorname{GL}_n(\mathbb{A}_F)$ such that $L(s,\rho)$ and $L(s,\pi)$ agree at almost all places. If such a π exists, ρ is said to be *modular*. Langlands's conjecture does indeed imply Artin's conjecture.

We consider in the thesis the case where ρ is a four-dimensional representation of *solvable* type, i.e., the image of ρ is solvable. We study what is known about Artin's and Langlands's conjectures for ρ . Artin's conjecture is already known in the imprimitive cases, but not in the primitive ones. We show in two new cases, one primitive and one monomial, that ρ is modular; the former case yields new instances of Artin's conjecture. We show that there are only two other primitive cases where one does not know Langlands's conjecture for ρ , and that these cases are symplectic and would follow from certain instances of non-normal quintic base change for GL₄. Our new monomial case is non-essentially-self-dual. In fact we show that if ρ is monomial and essentially self-dual, then it is modular.

We have two other small results for representations in other dimensions. First, if ρ is primitive and three dimensional, then in certain cases we show that the associated eightdimensional representation $\operatorname{Ad}(\rho)$ is modular. Second, we show that ρ of dimension n having supersolvable image is modular if $n = 2^j$ or $n = 2^j \cdot 3$ for some j.

Lastly, we include in an appendix a proof of Ramakrishnan that if ρ corresponds to π as above, then the complete *L*-functions for ρ and π are equal as Euler products over \mathbb{Q} . More precisely, $L(s, \rho_v) = L(s, \pi_v)$ at every finite place, and $\prod_{v \mid \infty} L(s, \rho_v) = \prod_{v \mid \infty} L(s, \pi_v)$.