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Abstract. We give a formula for the number of newforms in Snew
k (N) that have prescribed ramified

supercuspidal components πp at a set T of primes dividing N . This dimension is given in terms
of the trace of the Atkin–Lehner operator at T on Snew

k (N). It depends only upon the weight, the
level, the ramified quadratic extensions Ep/Qp attached to the πp, and the root number of each πp.
The formula is completely explicit when T consists of either a single prime or all prime factors of
N .
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1. Introduction

A basic application of the trace formula is computing the dimensions of the spaces Sk(N) of
holomorphic cusp forms of weight k and level N . There are various decompositions of Sk(N) into
smaller spaces, and it is natural to ask for dimensions of these spaces. First, Atkin and Lehner
decomposed Sk(N) into a new space Snew

k (N) and an old space Sold
k (N) of forms coming from lower

levels. Dimensions of new (and old) spaces can be computed recursively, and more explicit formulas
were derived in [gM].

Since each Hecke eigenform f ∈ Snew
k (N) determines an irreducible representation πp of PGL2(Qp)

for each prime p, one can further decompose Snew
k (N) according to the possible local components

πp at the primes p |N . When N is squarefree, πp is determined by the local root number εp = ±1,
i.e., the local Atkin–Lehner sign. In this setting, the second author [M1] gave dimension formulas
for the subspaces of Snew

k (N) with any fixed collection of signs {εp}p |N . While asymptotically all
collections of signs are equally likely, there is actually a bias towards/against certain collections of

local signs, as well as a bias towards the global root number ε = (−1)k/2
∏
p |N εp being +1. The

dimension formulas for specifying a single local or global root number were extended to general
levels in [M3, M5]. Again, there is typically a bias towards one local or global root number over
the other.

If p2 |N , the possible local representations at p are no longer determined by just the local root
number. The first author [K] recently gave dimension formulas for spaces of forms whose local
component πp at each p |N is a fixed supercuspidal of conductor p2 or p3, assuming for technical
reasons that k > 2. This is essentially the most refined dimension formula one might hope for
for levels such that vp(N) ∈ {2, 3} for each p |N . (When p2 ‖ N , there are other possible local
representations at p, but they are not minimal.) Here as well there is a bias towards/against certain
collections of local representations. The key ingredient in [K] is the explicit computation of local
elliptic orbital integrals attached to matrix coefficients of the fixed supercuspidals. The reason for
the restriction to conductors with small exponents is that these integrals become quite complicated
when the exponent is large.

Our main result is Theorem 1.1 below, which is a dimension formula that allows for prescribed
supercuspidals of any odd-power conductor (the “ramified” supercuspidals). This formula is ob-
tained without computing local orbital integrals explicitly, by blending the approaches of [K] and
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[M3, M5]. First, the simple trace formula in [K] expresses the dimension as the sum of a main
term and a certain global elliptic orbital integral (see (4.5) below). For a ramified supercuspidal
πp, we show that the value of the local orbital integral is the product of the local root number
εp with a constant depending only on the ramified quadratic extension Ep/Qp determined by πp.
This, together with an analysis of the Galois orbit of πp given in Proposition 3.5, allows us to
express the desired dimension in terms of the trace of an Atkin-Lehner operator on the full space
of newforms of the given level. Traces of such operators were obtained in [M3, M5]. The method
can be extended to other cases where the local root number appears in the orbital integral (see
Remark 1.2(b) below).

1.1. Main result. To state the result precisely, fix a squarefree odd integer T > 1, an integer
M ≥ 1 relatively prime to T , and an integer N of the form

(1.1) N = M
∏
p|T

p2rp+1

with each rp ≥ 1 and r3 = 1 if 3 |T . For each p |T , fix a supercuspidal representation πp of
PGL2(Qp) of conductor p2rp+1. It has an associated ramified quadratic extension Ep/Qp that
appears in the inducing data on both sides of the local Langlands correspondence. We let πT =
(πp)p|T denote this tuple of representations.

Let
Snew
k (N ;πT ) ⊆ Snew

k (N)

denote the subspace spanned by the newforms that have local component πp at each p |T . Because
every irreducible admissible representation of PGL2(Qp) with conductor p2rp+1 must be supercus-
pidal (see the table at the end of [Sch, §1]), we have

(1.2) Snew
k (N) =

⊕
πT

Snew
k (N ;πT ),

an orthogonal direct sum. The purpose of this paper is to compute the dimension of each subspace
on the right-hand side when k ≥ 4. There are two striking qualitative features of our result, namely
for N, k and T ≥ 5 fixed as above:

• As πT varies over all tuples, there are only three possibilities for dimSnew
k (N ;πT ), of the

form I − E , I, I + E where I, E > 0. The middle case occurs for all πT except those for
which Ep = Qp(

√
−T ) for all p |T .

• In all cases where the bias E has been computed explicitly (i.e., when M = 1 or T is prime),
it depends only on T and M in (1.1), and not the conductor exponents 2rp + 1 or k.

Our main result is the following.

Theorem 1.1. Suppose T ≥ 5 is odd, and fix a tuple πT = (πp)p|T as above. Let επT =
∏
p|T εp be

the product of the root numbers of the πp. Define

∆(πT ) =

{
1 if Ep = Qp(

√
−T ) for all p |T

0 otherwise.

Let k ≥ 4 be even and let N be as in (1.1) (with v3(N) = 3 if 3 |T ). Then

(1.3) dimSnew
k (N ;πT ) =

k − 1

12
ψnew(M)

∏
p|T

p2 − 1

2
prp−1 + ∆(πT )επT

tr(WT |Snew
k (N))∏

p|T (p− 1)prp−1
,
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where WT =
∏
p|T Wp is the Atkin-Lehner operator at T of level N , and ψnew is the multiplicative

function defined on prime powers by

ψnew(pa) =


p(1− 1

p) if a = 1

p2(1− 1
p −

1
p2

) if a = 2

pa(1− 1
p)(1− 1

p2
) if a ≥ 3.

The above dimension formula is given explicitly in the two special cases M = 1 and T prime as
follows. Define constants bT,e according to the values in following table:

e T ≡ 1 mod 4 T ≡ 3 mod 8 T ≡ 7 mod 8
0 1/2 2 1

1, 2 −1/2 −1 0
3 1/2 −3 0
4 0 3/2 −1/2

≥ 5 0 0 0

If M = 1, then

(1.4) dimSnew
k (N ;πT ) =

k − 1

12

∏
p|T

p2 − 1

2
prp−1 + ∆(πT )ε(k, πT )bT,0 h(−T )

where h(−T ) is the class number of Q(
√
−T ) and ε(k, πT ) = (−1)k/2επT is the common global root

number of the newforms spanning Snew
k (N ;πT ).

If T = p ≥ 5 is prime, then

(1.5) dimSnew
k (N ;πT ) =

k − 1

12
ψnew(M)

p2 − 1

2
prp−1 + ∆(πT )(−1)k/2επT bp,v2(M) κ−p(M

′)h(−p),

where M ′ is the odd part of M and κ−p is the multiplicative function given on odd prime powers
`m by

κ−p(`
m) =


(−p
`

)
− 1 m = 1

−
(−p
`

)
m = 2

0 m ≥ 3.

Remark 1.2. (a) This theorem says that for fixed N,T, k as above, the dimensions of the subspaces
Snew
k (N ;πT ) are of the form I + δεA where I, A are constant, and δ ∈ {0, 1} and ε = ±1 depend

upon the choice of πp’s for p |T . The condition T ≥ 5 odd, which guarantees that there is a just
a single elliptic orbital integral on the geometric side of the relevant trace formula (see (4.5)), is
necessary for a result of this form. For instance, there are four choices for π3 in level 27, and the
four spaces Snew

6 (27;π3) have dimensions 1, 2, 2, 2 by [K, Theorem 7.16]; this is not compatible with
the form I + δεA. The difference is that there are two more elliptic terms in the trace formula in
this case.

(b) Some of our results also incorporate unramified (i.e., even conductor exponent) supercuspidal
representations in addition to ramified ones. Proposition 4.2 generalizes the ∆(πT ) = 0 case of the
above theorem to allow for prescribed supercuspidals of any conductor exponent, giving conditions
under which the dimension is just the main term. In §4.4 we indicate how one can extend Theorem
1.1 to incorporate depth zero (conductor p2) supercuspidals at certain places.
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(c) The explicit calculations of tr(WT |Snew
k (N)) that yield (1.4) and (1.5) (see (4.12) and (4.13))

come from [M3, Proposition 3.2] and [M5, §4.2] respectively, and are obtained from the (classi-
cal) trace formula for Atkin–Lehner operators. (These references contain a couple of typograph-
ical errors, which we fix in the appendix.) Similar methods should yield an explicit formula for
tr(WT |Snew

k (N)) in general, but we do not attempt to carry this out here.

(d) The factor p2−1
2 prp−1 appearing in the main term is the formal degree of πp relative to the

Haar measure for which meas(PGL2(Zp)) = 1. (See Lemma 4.1 and §1.4 below.)
(e) The special case of (1.4) in which all rp = 1 was first given in [K, Theorem 1.2]. As mentioned

earlier, a surprising feature of the more general case (1.4) (and also (1.5)) is that the elliptic term
is the same – it is unchanged if we increase the conductor exponents of the πp’s.

In §2 we give an explicit model for the unitary ramified supercuspidal representations of GL2(Qp),
following Kutzko. In §3 we show that the Galois orbit of a given πp as in Theorem 1.1 consists
of all supercuspidals of PGL2(Qp) with conductor p2rp+1 that have the same Ep and εp as πp.
This is used in §4.2 to prove that dimSnew

k (N ;πT ) depends only on the Galois orbits of the local
components of πT . It follows that the non-archimedean part of the relevant elliptic orbital integral
depends only on N , the fields Ep, and επT . The trace of the Atkin–Lehner operator then provides
an additional constraint that determines the value of this integral, yielding (1.3). We remark that
computing the trace of a Hecke operator Tn on Snew

k (N ;πT ) with n > 1 will generally involve more
than one elliptic orbital integral, and so its determination would require more information.

Below we will discuss further context for Theorem 1.1.

1.2. Relation to root number bias. For the levels that we consider, Theorem 1.1 identifies more
precisely where the local and global root number biases in [M3, M5] arise. E.g., if M = 1, then
we see that the global root number bias in [M3] is only coming from the collection of ramified
supercuspidals associated to the quadratic extensions Ep/Qp which make ∆(πT ) = 1. We remark
that under certain congruence conditions, one can also deduce this from considering the action of
quadratic twists on these spaces (see [M5, §7]).

Further, from the perspective of the trace formula, the reason for the bias is simply that the local
root number appears in the matrix coefficient for πp. It factors out of the relevant local orbital
integral (see (4.9) below), leading directly to the root number επT in (1.3).

1.3. Relation to Galois-invariant decompositions. We have been discussing the decompo-
sition of Snew

k (N) according to all possible local components at p |T . However, for arithmetic
investigations it is desirable to decompose Snew

k (N) according to Galois orbits of newforms. Given
a Hecke eigenform f(z) =

∑
anq

n normalized so that an = 1, its Galois orbit is the set of newforms
fσ(z) =

∑
σ(an)qn for σ ∈ Aut(C), or equivalently, Gal(Q/Q). This action extends C-linearly to

a Galois action on Snew
k (N). When N = 1, Maeda’s conjecture asserts that there is a single Galois

orbit of newforms.
There is no apparent way to detect the Galois orbits of newforms in Snew

k (N) directly via the
trace formula. The best one can aim for is to decompose the space according to the Galois orbits of
local representations πp at each place p |N . This leads to a decomposition of Snew

k (N) in which each
subspace summand is globally Galois-invariant, but not in general minimally so, i.e., each summand
may contain multiple Galois orbits. However, it is expected that generically each summand is
spanned by a single Galois orbit, at least after separating out non-minimal twists and CM forms.
(See, for example, [LS, M2, CM, DPT] for this philosophy, if not this exact statement.)

Suppose N is given by (1.1) as above. For p ≥ 5, we will show in Proposition 3.5 that the
2(p − 1)pr−1 supercuspidal representations of PGL2(Qp) of conductor p2r+1 are partitioned into
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exactly four Galois orbits, parametrized by the pairs (Ep, εp) giving the ramified quadratic extension
Ep/Qp (which specifies the local inertial type) and the Atkin–Lehner sign εp. One feature of
Theorem 1.1 is that the dimension depends only on such pairs, i.e., the local Galois orbits of the
fixed components at the prime factors of T . Thus one can reinterpret the theorem as a formula for
the dimension of the subspace of Snew

k (N) determined by prescribing local Galois orbits for each

p |T . Namely, each local Galois orbit of conductor p2r+1 consists of p−1
2 · p

r−1 supercuspidals, so
one merely needs to multiply the dimension formula in Theorem 1.1 by a product of factors of this
form.

We explicate this in the simple case that N = p2r+1 and T = p.

Corollary 1.3. Let k ≥ 4 be even, p ≥ 5, r ≥ 1, Ep/Qp be a ramified quadratic extension, and
εp ∈ {±1}. Write Snew

k (p2r+1;Ep, εp) for the (Galois-invariant) subspace of Snew
k (p2r+1) spanned

by newforms with local component πp dihedrally induced from Ep with Atkin–Lehner sign εp. Then

dimSnew
k (p2r+1;Ep, εp) =

k − 1

12

(
p− 1

2

)2

(p+ 1)p2(r−1) + (−1)k/2εp ∆(Ep) bp,0
(p− 1)pr−1

2
h(−p),

where ∆(Ep) = 1 if Ep ' Qp(
√
−p) and 0 otherwise.

Remark 1.4. One can also deduce the r = 1 case from [K, Theorem 7.17].

Note that a newform of level p2r+1 must have a rationality field which contains

(1.6) Q(ζpr)
+ = Q(ζpr + ζ−1

pr ) = Q(ζpr) ∩ R
for ζpr a primitive pr-th root of unity (see [M4] or Proposition 3.5), so each Galois-invariant space

Snew
k (p2r+1;Ep, εp) must have dimension a multiple of 1

2φ(pr) = (p−1)pr−1

2 . This provides a simple
sanity check on the corollary.

Corollary 1.3 often allows us to identify the local components πp (up to local Galois conjugacy)
for global Galois orbits from the sizes of the Galois orbits together with the Atkin–Lehner signs.
This is considerably simpler than the algorithm presented in [LW]. (See also [M4] for a partial
analogue when p = 3.)

Example 1.5. When k = 4 and N = 1331 = 113, Corollary 1.3 says that dimSnew
4 (113;Ep, εp)

is 75 if Ep ' Q11(
√

11) and 75 + εp10 if Ep ' Q11(
√
−11). One can check in the [LMFDB] that

there are six Galois orbits of newforms in Snew
4 (N). They have sizes 5, 5, 60, 75, 75, and 80 and

Atkin–Lehner signs +1, −1, −1, −1, +1 and +1, respectively. Necessarily, the two orbits of size
75 have local components π11 dihedrally induced from Q11(

√
11) and the other four orbits have π11

dihedrally induced from Q11(
√
−11).

We remark that the two orbits of size 5 each consist of CM forms, with CM by Q(
√
−11).

Thus there are ten CM forms in Snew
4 (113) and 10 is precisely the size of the secondary term in

Corollary 1.3 when ∆(Ep) 6= 0. There is a similar numerical coincidence whenever p ≡ 3 mod 4. So
at first glance one might wonder whether the secondary term in Corollary 1.3 can at least partially
be explained by the existence of CM forms. However, since the two orbits of CM forms occur in
spaces with opposite Atkin–Lehner signs, there does not seem to be a direct link. Furthermore, CM
forms do not occur in Snew

k (p2r+1) when p ≡ 1 mod 4. (Such a form would have to have CM by an
imaginary quadratic field with discriminant dividing p2r+1, but there are no such fields.)

Example 1.6. Let k = 4 and N = 3125 = 55. Here the newforms have not been computed in the
LMFDB, but dimSnew

4 (55) = 600 and we can compute the Hecke polynomial h2 for T2 acting on
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Snew
4 (55) in Sage. Since h2 has distinct irreducible factors of degrees 140, 150, 150 and 160, these

must be the sizes of the Galois orbits of newforms. By Corollary 1.3, the orbit of size 150 ± 10
corresponds to a newform f with local component π5 dihedrally induced from Q5(

√
5) = Q5(

√
−5)

and Atkin–Lehner sign ±1.

1.4. Other related work. Several authors before have considered the problem of asymptotics
for dimensions of newspaces with prescribed local ramified components or inertial types. See for
instance [We] for prescribing arbitrary inertial types in the more general setting of Hilbert modular
forms, and [KST] for prescribing supercuspidal components for more general automorphic forms.
This amounts to determining the main term in the trace formula, which involves the formal degree.
Theorem 1.1 shows that, at least in our setting, the exact dimension formula is quite simple, with
the asymptotic being in fact an equality much of the time. See also the introduction to [K] for
more discussion of such asymptotic formulas. We discuss inertial types further at the end of §3.2.

We also remark that the authors of [DPT] considered the problem of existence of cusp forms with
given components at the ramified places for sufficiently large weight. For supercuspidal components,
it is not too hard to deduce this from a simple trace formula. One consequence of our exact formula
is an effective lower bound for weights where all ramified supercuspidals of a given conductor appear.
For instance if p ≥ 5, (1.4) implies that all supercuspidals πp of conductor 2r+1 occur in Snew

k (p2r+1)
for any even k ≥ 4. (One can check it directly for small p and apply the trivial bound h(−p) < 2p
for large p.)

Acknowledgments. Support for this research was provided by an AMS-Simons Research En-
hancement Grant for Primarily Undergraduate Institution Faculty, to the first author.

2. Supercuspidal representations of conductor p2r+1

In this mostly expository section we recall Kutzko’s construction of the unitary supercuspidal
representations of GL2(F ) with odd-power conductor, for F a p-adic field. Any such representa-
tion is compactly induced from a character of an appropriately-chosen open compact-mod-center
subgroup. We follow the description given in [Ku, §1] and [H2, §A.3.8] (see also [BH, §15,§19]),
making some of the details more explicit for use later on.

Let p be a prime number, and let F be a finite extension of Qp with ring of integers o, maximal
ideal p, valuation v, and q = |o/p|. Fix once and for all a uniformizer $ ∈ p and a character

ψ : F −→ C×

which is nontrivial on o but trivial on p. In this section only, we set G = GL2(F ), and write Z
for its center, so Z ∼= F×. This is also the only section in which we allow for a nontrivial central
character ω.

Fix an integer r ≥ 1, and let n = 2r + 1 ≥ 3. The central character of a supercuspidal
representation of G of conductor pn has conductor dividing pr ([T, Prop. 3.4]). Fix such a character

ω : F× −→ C×

trivial on 1 + pr.

Proposition 2.1. For n = 2r+1 and ω as above, up to isomorphism there are exactly 2qr−1(q−1)
distinct supercuspidal representations of G having conductor pn and central character ω.

Proof. The case of trivial central character is explained in [T, Theorem 3.9 and its remark]. The
proof of the general case is actually the same, in view of the following fact: for a finite group G
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with Z a subgroup of its center, and ω any character of Z,

|G/Z| =
∑

π∈Irr(G)
ωπ |Z=ω

(dimπ)2,

where ωπ denotes the central character of π. In the proof and notation of [T, Cor. 3.6.1], this can
be applied with G = D×/ 〈$〉U iD and Z = F×U iD/ 〈$〉U iD, using

|D×/F×U iD| = 2(q + 1)q2i−di/2e−1. �

Let P =

(
p o
p p

)
and for r ≥ 1 define the open compact subgroup

(2.1) U r = 1 + P r =

(
1 + ps

′
ps

ps+1 1 + ps
′

)
,

for s = b r2c = bn−1
4 c and s′ = d r2e = r − s =

{
s if r is even

s+ 1 if r is odd.
In [BH], this group is denoted

U rA for A = J =
(
o o
p o

)
. We have an isomorphism

U r/U r+1 −→ (o/p)2

induced by

(2.2)

(
1 + a$s′ b$s

c$s+1 1 + d$s′

)
7→

{
(a, d) mod p if r is even

(b, c) mod p if r is odd.

Since ω is trivial on 1 +pr, it defines a character of (U r ∩Z)/(1 +pr) = (1 +ps
′
)/(1 +pr) ∼= o/ps.

Hence there exists a unique
α = αω ∈ o/ps

such that

(2.3) ω(1 +$s′d) = ψ
( αd

$s−1

)
for all d ∈ o.

In Proposition 2.2 below, we will attach a character

χ = χt,ω : U r −→ C×

to each t ∈ o×/(1 + ps
′
). First we establish some notation. Fix t ∈ o× and let

(2.4) gχ =

(
0 t
$ $α

)
∈ P

for α as in (2.3). The characteristic polynomial

(2.5) X2 −$αX − t$
of gχ is irreducible over F by Eisenstein’s criterion, so E = F [gχ] is a ramified quadratic extension
of F . Notice that gχ ∈ oE is a uniformizer since its norm is det gχ = −t$. Furthermore, by [Se,
Prop. I.6.17], the ring of integers of E is given by

oE = o + ogχ.

The maximal ideal of oE is
pE = p + ogχ = P ∩ E.
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Using the fact that g2
χ = $αgχ +$t, we find by induction that for ` ≥ 0,

(2.6) p`E = pd`/2e + pb`/2cgχ,

so in particular

(2.7) prE = ps
′
+ psgχ.

Proposition 2.2. For t ∈ o× as above and

(2.8) k =

(
1 +$s′a $sb

$s+1c 1 +$s′d

)
∈ U r,

define

(2.9) χ(k) = ψ
(tr(gχ(k − 1))

$r

)
= ψ

($s+1(b+ tc) +$s′+1αd

$r

)
= ω(1 +$s′d)ψ

( b+ tc

$s′−1

)
.

Then χ is a character of U r depending only on t mod 1 + ps
′
, with

(2.10) U2r ( kerχ.

Furthermore, χ extends to a character of ZU r via χ|Z = ω. Lastly, the element gχ ∈ G(F )
normalizes U r and

(2.11) χ(g−1
χ xgχ) = χ(x)

for all x ∈ ZU r.

Remark 2.3. The group U2r−1 =

(
1 + pr pr−1

pr 1 + pr

)
contains U2r but not kerχ. For example, the

matrix

(
1 $s$s′−2t

−$s+1$s′−2 1

)
∈ U r is not in U2r−1 but it belongs to kerχ.

Proof. First we check that χ is a homomorphism. For k′ =

(
1 +$s′a′ $sb′

$s+1c′ 1 +$s′d′

)
∈ U r,

kk′ =

(
1 +$s′(a+ a′) +$2s′aa′ +$2s+1bc′ $s(b+ b′) +$r(a′b+ b′d)

$s+1(c+ c′) +$r+1(a′c+ dc′) 1 +$s′(d+ d′) +$2s′dd′ +$2s+1b′c

)
.

It follows that

χ(kk′) = ψ
((b+ b′) + t(c+ c′)

$s′−1
+
α(d+ d′)

$s−1

)
= χ(k)χ(k′)

for α as in (2.3), as required.
Noting that (

1 + ps
′

pr

pr+1 1 + pr−vp(α)

)
⊆ kerχ,

where 0 ≤ vp(α) ≤ s, (2.10) follows.
By (2.9) (whose third equality comes from (2.3)), χ(z) = ω(z) for z ∈ Z ∩U r. We can therefore

extend χ to a character of ZU r.
Note that

g−1
χ Pgχ =

(
−α/t 1/$
1/t 0

)(
p o
p p

)(
0 t
$ $α

)
=

(
o o
p o

)(
0 t
$ $α

)
= P.

Consequently, gχ normalizes U r = 1 + P r. Furthermore, for k ∈ U r,

χ(g−1
χ kgχ) = ψ

(tr((k − 1)gχ)

$r

)
= ψ

(tr(gχ(k − 1))

$r

)
= χ(k),
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giving (2.11). �

Henceforth we will view χ = χt,ω as a character of ZU r as in the proposition. Following [Ku, Def.
1.5], let Λχ = Λt,ω be the set of characters λ of E× that satisfy λ|F× = ω and whose restrictions to

(2.12) E× ∩ U r = 1 + ps
′
+ psgχ = 1 + prE =: U rE

(see (2.7)) coincide with the restriction of χ to this set. In the simplest case where n = 2r+ 1 = 3,
Λχ = {χ} is a singleton set.

Recall that the level of λ is the smallest integer k ≥ 0 such that λ is trivial on Uk+1
E := 1 + pk+1

E .

Lemma 2.4. Let λ ∈ Λχ. If pE is odd, then λ has level n − 2 = 2r − 1 and λ determines t, and
hence χ. If pE | 2, then the level of λ is ≤ n− 3 and λ does not determine χ.

Proof. By (2.6),
pn−2
E = p2r−1

E = pr + pr−1gχ.

Since r ≥ 1, n− 2 = 2r − 1 ≥ r, so 1 + pn−2
E ⊆ 1 + prE ⊆ U r. Thus for a, c ∈ o,

λ(1 + a$r + c$r−1gχ) = χ(

(
1 + a$r ct$r−1

c$r 1 + a$r + c$rα

)
) = ψ(2tc)

using the fact that ω is trivial on 1 + pr. If pE is odd, this is a nontrivial function of c, so λ is
nontrivial on 1 + pn−2

E . On the other hand, by (2.10), λ is trivial on Un−1
E ⊆ Un−1 = U2r. Thus λ

has level n− 2. If pE | 2, then ψ(2tc) = 1 and so λ is trivial on Un−2
E .

Similarly, for any b ∈ o, 1 + b$sgχ ∈ U rE by (2.12), and

λ(1 + b$sgχ) = χ(

(
1 bt$s

b$s + 1 1 + b$s+1α

)
) = ω(1 + b$s+1α)ψ(

2bt

$s′−1
).

Thus, given the fixed central character ω, λ determines t ∈ o×/(1 + ps
′
) when p is odd, but t is

only determined modulo 1 + ps
′−vp(2) if p | 2. �

Fix λ ∈ Λχ and consider the restriction λ|o×E . By (2.10), it may be viewed as a character of the

finite group

(2.13) o×E/U
n−1
E
∼= µq−1 × (U1

E/U
n−1
E ),

where µq−1 ⊆ o× consists of the (q − 1)-st roots of unity. (Since E/F is ramified, they both have
the same residue degree q.) An explicit parametrization of Λχ,ω could be given using the structure
of the above abelian group, given in [N].

In general, if G is a finite abelian group with a subgroup H, then restricting characters gives a
surjective homomorphism

Res : Ĝ −→ Ĥ

of the dual groups. Thus each character χ ∈ Ĥ has exactly |G/H| distinct extensions to G. In our
situation, the given character χ (restricted to F×U rE) has

|o×E/o
×U rE |

extensions to o×E . Noting that prE ∩ o = ps
′

as in (2.7), we find

(2.14) |o×E/o
×U rE | =

|oE/pr−1
E |

|o/ps′−1|
= qr−1/qs

′−1 = qs.
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Finally, given an extension λ of χ to o×E as above, it can be extended to E× by defining it on the
prime element gχ. In view of (2.5), we must have

λ(gχ)2 = λ($t+$αgχ) = ω($)λ(t+ αgχ).

Both factors on the right-hand side are defined, since t+ αgχ ∈ o×E . There are thus two choices for
λ(gχ) ∈ C. This proves the following.

Proposition 2.5. Having fixed ω, there are qs
′−1(q− 1) characters χ as in (2.9), corresponding to

the set of t ∈ o×/(1 + ps
′
). For each such χ,

|Λχ| = 2qs.

Consequently, Λω,r :=
⋃
χ Λχ =

⋃
t Λt,ω has 2qr−1(q − 1) elements.

Now fix χ and define

(2.15) JE,r = E×U r.

It is an open subgroup of G containing, and compact modulo, Z. For λ ∈ Λχ, we may extend χ to
a character of JE,r by

χλ(xk) = λ(x)χ(k)

for x ∈ E× and k ∈ U r. We then define the compactly induced representation

πχλ = c-IndGJE,r(χλ).

In view of the fact (Lemma 2.4) that λ determines χ when p is odd, in such cases, we can write πλ
instead of πχλ .

Proposition 2.6. For χλ as above, πχλ (or simply πλ if p is odd) is irreducible and supercuspidal
of conductor pn, where n = 2r+1. The 2qr−1(q−1) representations πχλ thus obtained are mutually
inequivalent, so they comprise the set of all supercuspidals of conductor pn and central character
ω. The new vector of πχλ is supported on the double coset

(2.16) JE,r

(
$r

1

)
K1(pn),

where K1(pn) =

(
o× o
pn 1 + pn

)
. When ω is trivial, the root number of πχλ is

(2.17) ε = λ(gχ) ∈ {±1}.

Remark 2.7. In the notation of [BH, §15], πχλ is the representation attached to the cuspidal type
(J , 2r − 1, $−rgχ).

Proof. Irreducibility and supercuspidality are proven in [Ku, Prop. 1.7], with inequivalence proven
in [Ku, Prop. 2.9]. See also [BH, §15].

We will verify momentarily that πχλ has a K1(p2r+1)-fixed vector, so that the conductor divides
p2r+1. Using the fact [T, Prop. 3.5] that E/F is ramified if and only if the conductor exponent is
odd, along with the count of supercuspidals of a given conductor and central character, it follows
by induction on r that the conductor of πχλ is exactly p2r+1.

In order to show that πχλ contains a well-defined K1(pn)-invariant function on the double coset
(2.16), we need to show that χλ(h1) = χλ(h2) whenever

(2.18) h1

(
$r

1

)
g1 = h2

(
$r

1

)
g2
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for some h1, h2 ∈ JE,r and g1, g2 ∈ K1(pn). Write hi = gdiχ ziki for di ∈ {0, 1}, ki ∈ U r, and zi ∈ Z.

From the valuation of the determinant in (2.18) we conclude that d1 = d2 and z−1
2 z1 ∈ o×. So

without loss of generality we can assume that hi = ziki with zi ∈ o×. We may then write

k := z−1
2 z1k

−1
2 k1 =

(
$r

1

)(
a b
$nc 1 +$nd

)(
$−r

1

)
=

(
a b$r

c$r+1 1 +$nd

)
where

(
a b

$nc 1+$nd

)
= g2g

−1
1 ∈ K1(pn). As k−1

2 k1 ∈ U r, the lower right entry of k belongs to

z−1
2 z1 + ps

′
. But this entry also equals 1 +$nd. It follows that z−1

2 z1, and hence also k, belongs to
U r. Therefore we can evaluate χλ(k) = χ(k) using (2.9), giving

χ(k) = ψ
(b$s′ + tc$s′

$s′−1
+
α$n−s′d

$s−1

)
= 1,

as required.
Now assume ω is trivial, so α = 0 and gχ =

(
t

$

)
. Let φ be the newvector of π = πχλ satisfying

φ(
(
$r

1

)
) = 1. Then

π(

(
1

$n

)
)φ = εφ

for the root number ε of π, [Sch, Thm 3.2.2]. So

ε =
[
π(

(
1

$n

)
)φ
]
(

(
$r

1

)
) = φ(

(
$r

$n

)
)

= φ(

(
t

$

)(
$r/t

$r/t

)(
$r

1

)(
t

1

)
) = χλ(gχ) = λ(gχ).

Note that λ(gχ)2 = λ(t$) = ω(t$) = 1 since ω is trivial. �

3. Local Galois orbits

We continue the local setup and notation of the previous section. In particular, F is a p-adic
field.

3.1. Galois action. The automorphism group of C acts on complex representations of a group by
automorphisms of the coefficients. This action is given in detail as follows. For V a complex vector
space and σ ∈ Aut(C), let V σ denote the vector space whose underlying group is V , but with scalar
multiplication given by a · v = σ−1(a)v. If G is a group and π : G → GL(V ) is a representation,
we let πσ denote the representation of G on V σ defined by πσ(g) · v = π(g)v. We say that a
representation π′ : G→ GL(V ′) is in the Galois orbit of π if π′ ' πσ for some σ ∈ Aut(C).

If 〈v, w〉 is the canonical bilinear pairing on V × V ∗, then (V σ)∗ may be identified as a set with
V ∗, with the pairing on V σ × (V σ)∗ given by

〈v, w〉σ := σ(〈v, w〉).
For example, 〈λ · v, w〉σ = σ(

〈
σ−1(λ)v, w

〉
) = λ 〈v, w〉σ. Furthermore, if φ(g) = 〈π(g)v, w〉 is a

matrix coefficient for π, then σ(φ(g)) = 〈πσ(g)v, w〉σ is the corresponding matrix coefficient for πσ.
In particular, if V = C and χ is a character of G, then χσ(g) = σ(χ(g)).

If π = IndGH(τ) for a representation (τ,W ) of a subgroup H of G, then it follows immediately
from the definitions that

(3.1) πσ = IndGH(τσ).

One corollary of this observation is the following.
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Proposition 3.1. Suppose π is an unramified principal series representation of PGL2(F ) with
Satake parameters {α, α−1}. Then πσ is the unramified representation with Satake parameters
{σ(α), σ(α)−1}.

3.2. Galois orbit of a ramified supercuspidal. Our goal here is to determine the Galois orbit
of a ramified supercuspidal representation. A direct proof is possible using arguments similar to
what appears below, but it is a bit easier to work on the Galois side of the tame local Langlands
correspondence, which we now recall (see [BH, §34]).

Throughout this section, F is a finite extension of Qp for a prime p 6= 2. Let E/F be a quadratic
extension, and ξ an admissible character of E×. (This means that ξ does not factor through the
norm map NE/F , and if E/F is ramified ξ|U1

E
also does not factor through the norm map.) Via

class field theory, ξ can be viewed as a character of the Weil group WE , and its induction

ρξ = IndWF
WE

(ξ)

is a smooth irreducible 2-dimensional representation of WF . By [BH, §29.2],

det ρξ = ηE/F ξ|F×
where ηE/F is the quadratic character of F× associated to E/F by class field theory. The tame local
Langlands correspondence associates to ρξ the dihedral supercuspidal representation π(ρξ) := πλ,
where λ = ∆ξξ and ∆ξ is the character of E×/U1

E associated to (E, ξ) as in [BH, §34.4]. In
particular, ∆ξ|F× = ηE/F , and if E/F is unramified then ∆ξ is unramified quadratic. Since p 6= 2,
every supercuspidal representation of GL2(F ) is obtained in this way.

We will focus on the case of trivial central character, which means ξ|F× = ηE/F . Consequently,

if ξ denotes the Gal(E/F )-conjugate of ξ, then ξ(x)ξ(x) = ξ(NE/F (x)) = 1, so ξ = ξ−1. Note that

ρξ|WE
' ξ ⊕ ξ.

Via §3.1, Aut(C) acts on the set of (isomorphism classes of) n-dimensional Weil (or Weil–Deligne)
representations, as well as on representations of GLn(F ). Furthermore, the local Langlands cor-
respondence commutes with this Galois action [H1, §7.4]. Applying (3.1) to ρξ, it then follows
immediately that

(3.2) πσ = π(ρξσ).

In addition, from the definition of the Galois action on representations of GLn(F ) we see that it
preserves conductors.

The equality (3.2) gives one description of the Galois orbit of a dihedral supercuspidal rep-
resentation. We will require a more explicit description in the case of a ramified supercuspidal
representation π = π(ρ) (see Proposition 3.5). In this case, there is a unique ramified quadratic
extension E = Eπ of F such that ρ is induced from E (see the proof of [BH, Theorem 34.1]) and
thus by (3.2) E is an invariant for the Galois orbit of π.

Say π = π(ρξ) is a supercuspidal representation of PGL2(F ) of conductor exponent 2r+1. Then

ξ : W ab
E ' E× → C× is a character of conductor exponent 2r ([Sch, Theorem 2.3.3]) such that

ξ|F× = ηE/F . Choose uniformizers $F , $E of F and E so that $2
E = $F . Then ξ($E) = ±1 since

ξ($F ) = 1. Note that ξ($E) is closely related to the root number of π since we can take $E = gχ
due to the assumption of trivial central character, so by (2.17),

επ = λ($E) = ξ($E)∆ξ($E).

Because ξσ($E) = ξ($E) ∈ Q for any σ ∈ Aut(C), the Galois orbit of π is determined by (i) E,
(ii) ξ($E), and (iii) the Galois orbit of ξ|o×E .
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Let ξ′ = (∆ξξ)|o×E . Since E/F is ramified, o×E = o×FU
1
E , so ∆ξ|o×E factors through o×F /(o

×
F ∩ U1

E)

on which it agrees with ηE/F . In particular, this restriction is quadratic and only depends on E.
Thus

(ξ′)σ = ∆σ
ξ ξ
σ|o×E = ∆ξξ

σ|o×E = (ξσ)′.

So it is sufficient to study the Galois orbit of ξ′. The advantage of working with ξ′ is that it factors
through o×E/o

×
FU

2r
E (see (2.13)).

Lemma 3.2. Suppose E/F is ramified. Then a character of o×E/o
×
FU

2r
E is nontrivial on U2r−1

E if
and only if it is of the form ξ′ for an admissible character ξ of conductor 2r such that ξ|F× = ηE/F .

Proof. Given ξ as above, ξ|U2r−1
E

= ξ′|U2r−1
E

is nontrivial by Lemma 2.4.

Conversely, suppose η is a character of o×E/o
×
FU

2r
E . By [Se, Cor. V.3.3] (for which in the present

context we have t = 0 and ψ(n) = 2n),

NE/F (U2r−1
E ) = NE/F (U2r

E ) = U rF ⊆ U2r
E ⊆ ker η.

If η is nontrivial on U2r−1
E , it follows that η does not factor through the norm map. So it comes

from an admissible character ξ. �

Consequently, understanding the Galois orbits of ramified supercuspidals requires understanding
the structure of o×E/o

×
FU

2r
E ' (o×E/U

2r
E )/(o×F /U

r
F ). This group has order qr (see (2.14)). Its structure

can be understood from that of unit groups mod higher unit groups, as determined in [N]. However,
the structure of the latter is a bit technical and breaks up into several cases. Essentially, the
difference in the p-ranks of o×E/U

2r
E and o×F /U

r
F is typically [F : Qp] when r �F 0, so generally

this quotient is not cyclic. For simplicity, we will just determine certain hypotheses under which
o×E/o

×
FU

2r
E is cyclic.

Lemma 3.3. Suppose E/F is a ramified quadratic extension and r ≥ 1.

(1) If o×E/o
×
FU

2r
E is cyclic, then F/Qp is totally ramified (including the possibility F = Qp). If

F/Qp is totally ramified, then taking r = 1, o×E/o
×
FU

2
E is cyclic of order p.

(2) If F = Qp and p ≥ 5, then o×E/o
×
FU

2r
E is cyclic of order pr.

Remark 3.4. When F = Q3 and r ≥ 2, the quotient is not cyclic, [R, §13].

Proof. (1) Since o×E/o
×
FU

2
E is a quotient of o×E/o

×
FU

2r
E , if the latter group is cyclic, so is the former.

Note that
o×E/o

×
FU

2
E ' (o×E/U

2
E)/(o×F /U

1
F ) ' U1

E/U
2
E ,

which is isomorphic to the additive group of Fq. This is only cyclic when q = p, i.e., F/Qp is totally
ramified.

(2) By (1), we may assume r ≥ 2. Say E = Qp(
√
d) with d a squarefree integer and p ≥ 5.

Generators and relations for o×E/U
2r
E are determined in [R, §13]. It is isomorphic to the product of

F×p and a p-group of p-rank 2. The F×p factor is generated by an element of o×F , and the p-part is

generated by 1 + p ∈ o×F and 1 +
√
d. Hence o×E/o

×
FU

2r
E is generated by the single element 1 +

√
d,

which has order pr. �

Suppose o×E/o
×
FU

2r
E is cyclic, necessarily of order qr = pr. The primitive characters ξ of o×E/o

×
FU

2r
E

are those which are nontrivial on U2r−1
E . Since o×E/o

×
FU

2r−1
E has order pr−1, the imprimitive char-

acters of o×E/o
×
FU

2r
E are those with order dividing pr−1. Hence the primitive characters ξ are in

(non-canonical) bijection with the pr-th roots of unity which are not pr−1-th roots of unity, simply
by specifying ξ on a fixed generator. Two such characters are Galois conjugate if and only if they
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have the same order. We see that there are (p−1)pr−1 primitive characters, forming a single Galois
orbit.

Proposition 3.5. Suppose p is odd and r ≥ 1. Assume that either (i) F/Qp is totally ramified
(this includes the case F = Qp) and r = 1, or (ii) F = Qp for p ≥ 5. Then there are precisely four
Galois orbits of smooth irreducible representations π of PGL2(F ) of conductor exponent 2r+1, and
a complete set of invariants for the Galois orbit of π is the pair (Eπ, επ), where Eπ is the ramified
quadratic extension of F attached to π and επ is the root number of π. Moreover, with notation as
in (1.6), Gal(Q(ζpr)

+/Q) acts transitively and faithfully on the Galois orbit of such a π.

Remark 3.6. The case of F = Qp is also implicit in the proof of [DPT, Theorem 2.7], though the
argument there is somewhat different.

Proof. Let π = π(ρξ) and π̃ = π(ρξ̃) be supercuspidal representations of PGL2(F ) of conductor

exponent 2r + 1. Suppose Eπ = Eπ̃ = E and ξ($E) = ξ̃($E), where $2
E is a uniformizer of

F . Under the given hypotheses, f = 1, so by the preceding discussion there exists σ ∈ Aut(C)

such that ξ̃|o×E = ξσ|o×E . But then ξ̃ = ξσ on E× as well, so π̃ = πσ. Since there are exactly two

possibilities for E and two possibilities for ξ($E) ∈ {±1}, it follows that there are exactly four
possibilities for the Galois orbit of π. Further, using the fact that the local root number επ is the
eigenvalue of the Atkin–Lehner operator W on a newvector in π, it is easy to see that επ is also an
invariant of the Galois orbit of π that can be used in place of the related parameter ξ($E).

It remains to prove the last statement. A given π as above is parametrized (in a Galois-equivariant
way) by the pair {ξ, ξ−1} since ξ and ξ−1 induce isomorphic supercuspidals. By the preceding
discussion, ξ is determined by (i) ξ($E) ∈ {±1} and (ii) the primitive pr-th root of unity ξ(β)
where β is a generator of the cyclic group o×E/o

×
FU

2r
E . Since Gal(Q(ζpr)

+/Q) acts faithfully and
transitively on the collection of 2-element sets {ζ, ζ−1} as ζ ranges over primitive pr-th roots of
unity, it also acts faithfully and transitively on the Galois orbit of π. �

Remark 3.7. In general, there are more than four Galois orbits of supercuspidal representations of
PGL2(F ) having conductor exponent 2r + 1. For instance, if q = pf > p, while the values of a
character ξ can be chosen independently on different generators a1, . . . , at of the noncyclic group
o×E/o

×
FU

2r
E , Galois automorphisms do not behave independently on the elements ξ(a1), . . . , ξ(at).

Finally we relate the above discussion to inertial types. We say that two smooth irreducible
representations π, π′ of GL2(F ) are in the same (inertial) type if their Langlands parameters ρ, ρ′

have isomorphic restrictions to the inertia group IF ⊆ WF . If π is supercuspidal, then π′ is in the
same type as π if and only if π′ ' π ⊗ χ, where χ is an unramified character of F×. See [H2] for
more details.

Let π = π(ρξ) be a supercuspidal of PGL2(F ) of conductor 2r + 1, and χ be the unramified
quadratic character of F×. Then π ⊗ χ = π(ρξ ⊗ χ) is the only other representation of PGL2(F )
with the same inertial type as π. The Langlands parameters for both π and π ⊗ χ have the same
restriction ξ|o×E to the inertia group IE of E. Further, π and π⊗χ have opposite root numbers (e.g.,

see [D, (5.5)]). Hence under the hypotheses of Proposition 3.5, we see that the Galois orbit of the
inertial type of π (among representations with trivial central character) consists of all supercuspidals
π′ of the same conductor such that Eπ = Eπ′ .

Remark 3.8. In [DPT], the authors studied Galois orbits of inertial types. In fact, because the
inertial type is not a fine enough invariant for their end goal, [DPT] augment inertial type Galois
orbits with “minimal” Atkin–Lehner signs. We suggest that alternatively one might consider Galois
orbits of representations as above, rather than Galois orbits of types together with a sign.
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When p = 3 and r = 1, there are only four supercuspidal representations of PGL2(Q3) of con-
ductor 33. Case (i) of the above proposition implies that the Galois orbits of these representations
are singleton sets. (It is asserted in [DPT, Theorem 2.7] that there are four Galois orbits of local
inertial types in this situation. But this cannot be true since it would imply that there are eight
Galois orbits of supercuspidals of conductor 33.)

4. Dimension formulas

4.1. General setup. Let G = GL2, Z its center, and G = G/Z. Let A be the adele ring of Q, and
normalize Haar measure on G(A) so that

meas(G(Q)\G(A)) = π/3

with G(Q) having the counting measure. Write Kp = GL2(Zp), Kp its image in G(Qp), and

normalize the Haar measure on G(Qp) so that meas(Kp) = 1. There is a unique choice of Haar

measure on G(R) so that the global measure on G(A) fixed above is the restricted product of the
local measures.

We will need an explicit expression for the formal degree of a supercuspidal representation. The
following is a special case of a result of Carayol.

Lemma 4.1. Let σ be a supercuspidal representation of GL2(F ) of conductor qc. Then the formal
degree of σ, computed relative to the Haar measure normalized by meas(K) = 1, is

(4.1) dσ =

{
q2−1

2 qr−1 if c = 2r + 1 is odd

(q − 1)qr−1 if c = 2r is even.

In particular, having fixed the measure, the formal degree depends only on the conductor of σ.

Proof. In [Car, §5.11], Carayol computed the formal degrees of the supercuspidal representations

of GLn(F ). Using the measure measC normalized by measC(K0(p)) = n−1(qn−1)−1(q−1)n where
K0(p) = o×K1(p) is the Iwahori subgroup, for σ of conductor qc he obtained the formal degree

dCσ = b
qn − 1

qb − 1
q

1
2

((n−1)(c−n)+b−n),

where b = gcd(c, n). Taking n = 2 and setting meas(K) = 1, we have

meas(K0(p)) = [K : K0(p)]−1 = (q + 1)−1 =
2

q − 1
measC(K0(p)).

So in our normalization, his result gives

dσ =
q − 1

2
dCσ =

q − 1

2
· bq

2 − 1

qb − 1
q

1
2

(c+b−4),

where b = gcd(c, 2). �

Now fix three integers M,T, S which are pairwise relatively prime with S and T square-free, and
write

(4.2) N = M
∏
p|S

p2rp
∏
p|T

p2rp+1

where rp ≥ 1 for each p |ST . Fix a tuple πST = (πp)p|ST of supercuspidal representations of

G(Qp), with πp of conductor p2rp (resp. p2rp+1) if p |S (resp. p |T ). For each p |ST , we may
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write πp = c-Ind
G(Qp)
Jp

(λp), where Jp is an open subgroup which contains, and is compact modulo,

Zp = Z(Qp), and λp is an irreducible representation which is trivial on Zp, subject to:

• dimλp = 1 if p |T
• Jp = ZpKp if p |S.

We will define a Z(A)-invariant test function f : G(A) −→ C with the property

trR(f) = dimSnew
k (N ;πST ),

where R(f) is the operator on L2(G(Q)\G(A)) defined by

R(f)φ(x) =

∫
G(A)

f(g)φ(xg)dg.

For p |ST , define a local test function fπp : G(Qp) −→ C as follows:

(4.3) fπp(x) =


dπpλp(x) if x ∈ Jp and p |T
trλp(x) if x ∈ Jp and p |S
0 if x 6∈ Jp,

where dπp is the formal degree of πp, given in (4.1). Thus, fπp is the complex conjugate of a matrix
coefficient of πp when p |T and the sum of dimλp = dπp (conjugated) matrix coefficients when p |S.

At primes ` - N , we let f` be the characteristic function of Z`K`.
Let q be a prime dividing M , and let Nq = vq(N). For 0 ≤ j ≤ Nq let

K0(qj)q = {
(
a b
c d

)
∈ Kq| c ∈ qjZq}

as usual, and define φqj : G(Qq) −→ C by

φqj (g) =

{
meas(K0(qj)q)

−1 if g ∈ ZqK0(qj)q

0 otherwise.

Used as a local test function in the trace formula, φqj serves to project the automorphic spectrum

onto its K0(qj)q-fixed vectors. We define fq to be the linear combination

(4.4) fq = φqNq − 2φqNq−1 + φqNq−2 ,

where φqj is taken to be identically 0 if j < 0. The role of fq is to give the trace on the locally

qNq -new part of the spectrum. Indeed, using [Cas, Corollary to the proof], one shows that for
any infinite dimensional irreducible admissible representation πq of PGL2(Qq), trπq(fq) ∈ {0, 1} is
nonzero if and only if cond(πq) = qNq .

At ∞ we take f∞ = dk〈πk(g)v, v〉, where πk is the weight k discrete series representation of
G(R), v is a lowest weight unit vector, and dk is the formal degree computed relative to our fixed
choice of Haar measure on G(R). This function is integrable over G(R) if and only if k > 2, so this
hypothesis will be in force.

Let
f = fπST ,k,N = f∞

∏
p|ST

fπp
∏
q|M

fq
∏
`-N

f` ∈ L1(G(A)).

By [K, Prop. 5.5 and Theorem 7.1], whose proofs carry over verbatim to the case with extra level
structure M included here, assuming k > 2 and also that T ≥ 5 is odd, we have

(4.5) dimSnew
k (N ;πST ) = trR(f) =

π

3
f(1) +

1

2
Φ(

(
−T

1

)
, f),
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for the elliptic orbital integral

(4.6) Φ(γ, f) =

∫
Gγ(Q)\G(A)

f(g−1γg)dg,

where Gγ is the centralizer of γ in G. (There are up to two additional elliptic terms if T ∈ {1, 3}
or T is even.)

The orbital integral factorizes as the product of a global measure term and the local orbital
integrals

Φ(γ, fp) =

∫
Gγ(Qp)\G(Qp)

fp(g
−1γg)dg

for p | 2N (cf. (4.10) below). (We must fix appropriate Haar measures on the local groups Gγ(Qp).
See [K, §3.3] for details.) The difficulty in evaluating (4.5) lies in computing Φ(

( −T
1

)
, fπp) for

each p |ST . In the case where πp has conductor p2 or p3, this was done in [K]. The general case
is considerably more difficult, and computing Φ(γ, fπp) for general conductor and γ remains open.
However, simply by considering the support of fπp we obtain the following, which extends [K, Prop.
5.6].

Proposition 4.2. Fix N as in (4.2), with T ≥ 5 odd. For each p |T , let Ep/Qp be the ramified
quadratic extension attached to πp. Suppose that either

(i) for some p |T , Ep 6= Qp(
√
−T ), or

(ii) for some odd p |S,
(
−T
p

)
= 1.

Then

(4.7) dimSnew
k (N ;πST ) =

k − 1

12
ψnew(M)

∏
p|T

p2 − 1

2
prp−1

∏
p|S

(p− 1)prp−1

for ψnew(M) as defined in Theorem 1.1.

Remark 4.3. The argument below shows that more generally without the hypotheses on T , when
p |T and γ ∈ G(Q) is elliptic in G(Qp) with vp(det γ) odd, Φ(γ, fπp) 6= 0 only when Ep = Qp(γ).

Proof. The identity term in (4.5) is given by
π

3
f(1) =

π

3
dk
∏
q|M

fq(1)
∏
p|ST

dπp .

Let ψ be the multiplicative function defined on prime powers by

ψ(qj) = [Kq : K0(qj)q] = meas(K0(qj)q)
−1 = qj(1 +

1

q
)

for j > 0. Then by (4.4) for a prime q|M we have

fq(1) = ψ(qNq)− 2ψ(qNq−1)δNq≥1 + ψ(qNq−2)δNq≥2,

where δ is an indicator function. One checks easily that this coincides with ψnew(qNq). Using (4.1)
and the fact (see, e.g., [KL, Prop. 14.4]) that dk = k−1

4π , we see that the identity term coincides
with the right-hand side of (4.7).

By (4.5), it remains to show that Φ(γ, f) = 0 under the given hypothesis, where γ =
( −T

1

)
.

If hypothesis (ii) holds, then the characteristic polynomial Pγ(X) = X2 + T factors mod p, so by
Hensel’s Lemma (using p 6= 2) γ is hyperbolic (rather than elliptic) in G(Qp). This implies that
Φ(γ, fπp) = 0 (see [K, Prop. 4.3]), giving the result in this case.
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Now suppose that Φ(γ, f) 6= 0. Then for each p |T , fp(g
−1γg) 6= 0 for some g ∈ G(Qp). Write

U
rp
p for U rp in (2.1), and similarly tp and χp for the t and χ determined by πp as in Proposition

2.2. Then the support of fp satisfies

JEp,rp = E×p U
rp
p ⊆ E×p U1

p = gχpQ×p U1
p

⋃
Q×p U1

p .

Since det(g−1γg) = T ∈ pZ×p , g−1γg must lie in the ramified component gχpQ×p U1
p :

g−1γg = z

(
tp

p

)(
a b
pc d

)
∈ Q×p gχpU1

p ,

where in fact z ∈ Z×p . Taking determinants and dividing by p,

T/p ≡ −z2tp mod p,

which shows that (−T/pp ) = (
tp
p ). Since Ep = Qp(

√
ptp) this condition is equivalent to Ep =

Qp(
√
−T ). It follows that under hypothesis (i), Φ(γ, f) = 0. �

4.2. Invariance of global dimension across local Galois orbits. Here we use Proposition 3.5
to show that the number of newforms with fixed ramified supercuspidal components πp at a finite
set of primes p ≥ 5 depends only on the Galois orbit of each πp.

Proposition 4.4. Let k ≥ 2 and T ≥ 5 a square-free odd integer. Let M ≥ 1 be an integer
relatively prime to T , and write N = M

∏
p|T p

2rp+1 for rp ≥ 1, with r3 = 1 if 3 |T . For each p |T ,

let πp and π′p be irreducible supercuspidal representations of PGL2(Qp) of conductor 2rp + 1 such
that Eπp = Eπ′p and επp = επ′p. Write πT = (πp)|p|T and π′T = (π′p)|p|T . Then

dimSnew
k (N ;πT ) = dimSnew

k (N ;π′T ).

Remark 4.5. We allow k = 2 since our proof does not rely on the trace formula.

Proof. By Proposition 3.5, for every p |T we have π′p ' π
σp
p for some σp ∈ Gal(Q(ζprp )+/Q). Let

n =
∏
p |T p

rp . Noting that Q(ζa) ∩Q(ζb) = Q(ζgcd(a,b)) = Q if (a, b) = 1, we have

Gal(Q(ζn)/Q) '
∏
p |T

Gal(Q(ζprp )/Q).

Hence there exists σ ∈ Gal(Q(ζn)/Q) which has image σp in each quotient Gal(Q(ζprp )+/Q). In
particular, πσp = π′p for each p|T .

Now let f be a normalized Hecke eigenform in Snew
k (N ;πT ). The automorphic representation

attached to f has the form π = πk ⊗
⊗

p πp. The newform fσ (see §1.3) corresponds to the

automorphic representation πk ⊗
⊗

p π
σ
p . This follows from Proposition 3.1, together with strong

multiplicity-one and the fact that the latter is known to be a cuspidal automorphic representation
of GL2(AQ) ([Wa, Section I.8]). Hence σ defines a vector space isomorphism of Snew

k (N ;πT ) with
Snew
k (N ;πσT ) = Snew

k (N ;π′T ). In particular these spaces have the same dimension. �

4.3. Proof of Theorem 1.1.

Lemma 4.6. Fix a tuple πT = (πp)p|T as in Theorem 1.1. Define

ΦT =
∏
p|T

Φ(
( −T

1

)
, fπp).

Then there exists IT ∈ C depending only on the rp such that

ΦT = ∆(πT )επT IT ,
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with notation as in Theorem 1.1. Consequently (4.5) becomes

(4.8) dimSnew
k (N ;πT ) =

k − 1

12
ψnew(M)

∏
p|T

p2 − 1

2
prp−1 + ∆(πT )επTA,

where A is a constant depending only on k, N and T , and independent of the choice of πT .

Remark 4.7. When p |T , the definition of Φ(γ, fπp) entails a choice of Haar measure on the compact

group Gγ(Qp). The choice is immaterial here but for concreteness we normalize to give it measure
1, and consequently

Φ(γ, fπp) =

∫
G(Qp)

fπp(g
−1
( −T

1

)
g)dg.

Proof. By Proposition 4.4 and (4.5), ΦT depends only on the rp, the fields Ep, and the επp . We
already showed in Proposition 4.2 that ΦT vanishes when ∆(πT ) = 0. So we may assume that
∆(πT ) = 1, i.e., Ep = Qp(

√
ptp) = Qp(

√
−T ) for each p |T .

Let γ =
( −T

1

)
. Since det γ = T ,

(4.9) ΦT =
∏
p|T

∫
G(Qp)

fπp(g
−1γg)dg = επT

∏
p|T

∫
Cp

fπp(g
−1
χp g

−1γg)dg

by (2.17), where Cp = {g ∈ G(Qp)| g−1γg ∈ gχpQ×p o×EpU
rp
p }. The value of the inducing character

λp (hence fπp by (4.3)) on Q×p o×EpU
rp
p is independent of εp = λp(gχp). Thus, IT (represented by the

product of the integrals over the Cp) depends only on the conductors p2rp+1 of the πp’s.
Globally we have

(4.10) Φ(γ, f) = meas(Gγ(Q)\Gγ(A))∆(πT )επT IT
∏
`-T

Φ(γ, f`).

The result now follows from (4.5), in view of the main term computed in Proposition 4.2. �

To prove Theorem 1.1, we just need to compute A from the above lemma. By (1.2),

(4.11) tr(WT |Snew
k (N)) =

∑
πT :επT =1

dimSnew
k (N ;πT )−

∑
πT :επT =−1

dimSnew
k (N ;πT ).

The number of supercuspidal representations of PGL2(Qp) with conductor p2rp+1 is 2prp−1(p− 1),
exactly half of which have root number +1 (resp. −1), as described in §2. It follows easily that half
of the tuples πT have επT = +1 (resp. −1), so applying the trace formula on the right-hand side of
(4.11), the main terms all cancel out. Given p|T , of the possibilities for πp, half, or prp−1(p − 1),

satisfy the non-vanishing condition that Ep = Qp(
√
−T ). So after eliminating the main terms in

(4.11), the number of nonzero summands remaining is∏
p|T

prp−1(p− 1).

By the above lemma, the nonzero terms that remain all have the same value, up to the sign επT
which is eliminated by the subtraction in (4.11). Thus, in the notation of the above lemma,

tr(WT |Snew
k (N)) = A

∏
p|T

prp−1(p− 1).

Solving for A, (1.3) of Theorem 1.1 follows from (4.8).
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Next, the calculations in [M3, Proposition 3.2] and [M5, §4.2] respectively, together with the
minor corrections made in the Appendix below, give the following, with notation as in Theorem
1.1:

• When M = 1 and N 6= 27, we have

(4.12) tr(WT |Snew
k (N)) = (−1)k/2bT,0 h(−T )

∏
p|T

(p− 1)prp−1;

• When T = p ≥ 5 is prime,

(4.13) tr(Wp|Snew
k (N)) = (−1)k/2(p− 1)pr−1 bp,v2(M) κ−p(M

′)h(−p).
We note that the constant bT,e in Theorem 1.1 coincides with cT,e/2, where cT,e is given by β(N) in
[M3, (1.1)] in the first case and by the class number coefficient in [M5, Table 2] in the second case.
The remaining parts of Theorem 1.1, namely (1.4) and (1.5), follow immediately upon substituting
the above formulas into (1.3).

4.4. Extension to allow depth zero supercuspidals. With the proof of Theorem 1.1 complete,
we indicate here how it may be extended so as to allow for prescribed depth zero supercuspidals at
certain places. First, by [K, (6.22),(5.6)], when T ≡ 1 mod p and cond(πp) = p2,

Φ(
( −T

1

)
, fπp) =

{
2εp if p ≡ 3 mod 4

0 if p ≡ 1 mod 4.

(When p ≡ 1 mod 4, we have
(
−T
p

)
=
(
−1
p

)
= 1 and (ii) of Proposition 4.2 applies.) This allows us

to extend Proposition 4.4 to also include prescribed depth-zero supercuspidals πp, π
′
p at each p |S

as long as επp = επ′p , and T ≡ 1 mod S. One also needs to adjust for the fact that (1.2) does not
hold in this case. Instead we need to consider S-minimal newforms, i.e., those whose level cannot
be reduced at primes dividing S by twisting. Taking N = M

∏
p|T p

2rp+1
∏
p|S p

2 with each rp ≥ 1,

SS-min
k (N) =

⊕
πST

Snew
k (N ;πST ).

By similar (but slightly more involved) arguments to those that led to the proof of Theorem 1.1,
assuming T ≡ 1 (mod S), T ≥ 5 is odd, and r3 = 1 if 3 |T , we find:

dimSnew
k (N ;πST ) =

k − 1

12
ψnew(M)

∏
p|T

p2 − 1

2
prp−1

∏
p|S

(p− 1)(4.14)

+ ∆(πST )επST
tr(WST |SS-min

k (N))∏
p|T (p− 1)prp−1

∏
odd p|S

p−1
2

,

where ∆(πST ) ∈ {0, 1} extends ∆(πT ) by assigning the value 0 if p ≡ 1 mod 4 for some p |S, or if
T ≡ 3 mod 4 and S is even.

Remark 4.8. By [AL, Theorem 6(ii)], if p |S and f ∈ Snew
k (N) is not p-minimal, then Wpf =(−1

p

)
f . Thus one can compute Atkin–Lehner traces on S-minimal spaces from the traces on the

full newspaces and dimensions of d-minimal subspaces for d |S. For instance, when S = p is prime,
one has

tr(WST |SS-min
k (N)) = tr(WST |Snew

k (N))−
(
−1

p

)(
dimSnew

k (N))− dimSS-min
k (N)

)
.

One can compute the dimensions of d-minimal subspaces by subtracting away dimensions of non-
minimal forms in a similar way to [Ch], which considers the (N -)minimal subspaces.
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Appendix: Errata to [M3, M5]

Here we correct two mathematical typographical errors in the formulas for tr(WT |Snew
k (N)) from

the published works [M3, M5] that were used in the proof of Theorem 1.1.∗

(1) We used [M3, Proposition 3.2] to explicate this trace when M = 1, and to our knowledge
that statement is correct. However, the case of the proposition that we use here is also
stated in [M3, Theorem 1.2], but the definition of δ there has a misprint. It should read
δ = 1 if (N2, k) = (1, 2) rather than if (N, k) = (1, 2). This agrees with [M3, Proposition
3.2].

(2) We used the calculations of [M5, §4] to explicate tr(WT |Snew
k (N)) when T = p is prime.

However, the equation just above [M5, Prop. 4.3] should read:

ℵ = c1

(
η∆0(q

r−1
2 )− 2η∆0(q

r−3
2 ) + δr≥5η∆0(q

r−5
2 )
)
h′(∆0)

= c1

(
σ(q

r−1
2 )− 2σ(q

r−3
2 ) + δr≥5σ(q

r−5
2 )
)
h′(∆0).

In loc. cit., the factor of 2 in the middle terms on the right mistakenly appears inside the
arguments of η∆0 and σ. The factor of 2 appears in the correct location in the definition of
ℵ several lines earlier.

In context, q is a prime and r ≥ 3 is an odd integer, so in fact this simplifies to

ℵ = c1

(
q
r−1
2 − q

r−3
2

)
h′(∆0).

This does not affect the proof of Proposition 4.3 or Theorem 1.1 in [M5].
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