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ABSTRACT. We give a formula for the number of newforms in S;;°¥ (V) that have prescribed ramified
supercuspidal components 7w, at a set T of primes dividing N. This dimension is given in terms
of the trace of the Atkin—Lehner operator at 7' on SV (N). It depends only upon the weight, the
level, the ramified quadratic extensions E,/Q, attached to the mp,, and the root number of each .
The formula is completely explicit when T consists of either a single prime or all prime factors of
N.
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1. INTRODUCTION

A basic application of the trace formula is computing the dimensions of the spaces Si(N) of
holomorphic cusp forms of weight k& and level N. There are various decompositions of Si(N) into
smaller spaces, and it is natural to ask for dimensions of these spaces. First, Atkin and Lehner
decomposed Sy (N) into a new space S (N) and an old space SP4(V) of forms coming from lower
levels. Dimensions of new (and old) spaces can be computed recursively, and more explicit formulas
were derived in [gM].

Since each Hecke eigenform f € SV (V) determines an irreducible representation 7, of PGL2(Q))
for each prime p, one can further decompose SV (V) according to the possible local components
mp at the primes p| N. When N is squarefree, 7, is determined by the local root number ¢, = £1,
i.e., the local Atkin-Lehner sign. In this setting, the second author [MI] gave dimension formulas
for the subspaces of Sp°V(V) with any fixed collection of signs {e,},|x. While asymptotically all
collections of signs are equally likely, there is actually a bias towards/against certain collections of
local signs, as well as a bias towards the global root number ¢ = (—1)*/2 Hp‘N ep being +1. The
dimension formulas for specifying a single local or global root number were extended to general
levels in [M3], [M5]. Again, there is typically a bias towards one local or global root number over
the other.

If p? | N, the possible local representations at p are no longer determined by just the local root
number. The first author [K] recently gave dimension formulas for spaces of forms whose local
component 7, at each p|N is a fixed supercuspidal of conductor p? or p?, assuming for technical
reasons that £ > 2. This is essentially the most refined dimension formula one might hope for
for levels such that v,(N) € {2,3} for each p| N. (When p? || N, there are other possible local
representations at p, but they are not minimal.) Here as well there is a bias towards/against certain
collections of local representations. The key ingredient in [K] is the explicit computation of local
elliptic orbital integrals attached to matrix coefficients of the fixed supercuspidals. The reason for
the restriction to conductors with small exponents is that these integrals become quite complicated
when the exponent is large.

Our main result is Theorem below, which is a dimension formula that allows for prescribed
supercuspidals of any odd-power conductor (the “ramified” supercuspidals). This formula is ob-
tained without computing local orbital integrals explicitly, by blending the approaches of [K| and
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M3, M5]. First, the simple trace formula in [K] expresses the dimension as the sum of a main
term and a certain global elliptic orbital integral (see below). For a ramified supercuspidal
mp, We show that the value of the local orbital integral is the product of the local root number
€p with a constant depending only on the ramified quadratic extension E,/Q, determined by .
This, together with an analysis of the Galois orbit of 7, given in Proposition @ allows us to
express the desired dimension in terms of the trace of an Atkin-Lehner operator on the full space
of newforms of the given level. Traces of such operators were obtained in [M3 [M5]. The method
can be extended to other cases where the local root number appears in the orbital integral (see

Remark [1.2(b) below).

1.1. Main result. To state the result precisely, fix a squarefree odd integer T' > 1, an integer
M > 1 relatively prime to T, and an integer N of the form

(1.1) N=M]]p""
p|T
with each 7, > 1 and rg = 1 if 3|T. For each p|T, fix a supercuspidal representation m, of
PGL2(Q,) of conductor p?»*1. It has an associated ramified quadratic extension E,/Q, that
appears in the inducing data on both sides of the local Langlands correspondence. We let mp =
(mp)pr denote this tuple of representations.
Let
S (N3 ) € SE(N)
denote the subspace spanned by the newforms that have local component 7, at each p|T. Because

every irreducible admissible representation of PGL2(Q,) with conductor p*"»T1 must be supercus-
pidal (see the table at the end of [Schl §1]), we have

(1.2) SEN(N) = P SE (N3 wr),

an orthogonal direct sum. The purpose of this paper is to compute the dimension of each subspace
on the right-hand side when k > 4. There are two striking qualitative features of our result, namely
for N,k and T > 5 fixed as above:

e As mp varies over all tuples, there are only three possibilities for dim SV (N;7r), of the
form Z — £,Z,7 + £ where Z,€£ > 0. The middle case occurs for all wp except those for

which E, = Q,(v—T) for all p|T.
e In all cases where the bias £ has been computed explicitly (i.e., when M = 1 or T is prime),

it depends only on 7" and M in (1.1f), and not the conductor exponents 2r, + 1 or k.
Our main result is the following.

Theorem 1.1. Suppose T > 5 is odd, and fix a tuple mp = (mp)
the product of the root numbers of the m,. Define

A(rp) = {1 if By = Qp(V=T) for all p|T

0 otherwise.
Let k > 4 be even and let N be as in (L.1) (with v3(N) =3 if 3|T). Then

pir as above. Let ex, =[], 1 €p be

r(Wr| S ()
(e - Dpr ©

. new k—1 new p2_1 r,—1
(1.3) dim SpV(N;7r) = Td} (M) 1} P A(mp)e
p
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where Wrp = leT Wy, is the Atkin-Lehner operator at T of level N, and "V is the multiplicative
function defined on prime powers by

p(1— ) ifa=1
P (p®) = ¢ p*(1 - % é) ifa=2
p%l—lxl—j) ifa>3

The above dimension formula is given explicitly in the two special cases M =1 and T prime as
follows. Define constants br. according to the values in following table:

elT=1mod4 T=3mod8&8 T =7mod8
0 1/2 2 1
1,2 -1/2 -1 0
3 1/2 -3 0
4 0 3/2 -1/2
>5 0 0 0
If M =1, then
new k—1 p2_1 rp—1
(1.4) dim Sp° (N3 77) = = 11 5P+ A(rr)e(k, mr)bro h(=T)
p|T

where h(—=T) is the class number of Q(v/=T) and e(k,mp) = (—1)*/2¢,.. is the common global root
number of the newforms spanning SpY(N; wr).
If T'=p > 5 is prime, then

k=1 ow mD>—1 ,
TT/) WV(M)——p" " + A(WT)(—l)k/Qewap,UQ(M) Kip(M') h(=p),

2

where M’ is the odd part of M and k_, is the multiplicative function given on odd prime powers
2 by

(1.5) dim SV (N;mr) =

=Py 1

7 m
Kop(f™) =4 —(F m
m

~—~—

(AVAR 1|
W N =

Remark 1.2. (a) This theorem says that for fixed N, T, k as above, the dimensions of the subspaces
SpeW(N;mr) are of the form 7 + de A where Z, A are constant, and 6 € {0,1} and € = +1 depend
upon the choice of 7,’s for p|T. The condition T' > 5 odd, which guarantees that there is a just
a single elliptic orbital integral on the geometric side of the relevant trace formula (see (4.5)), is
necessary for a result of this form. For instance, there are four choices for 73 in level 27, and the
four spaces S§V(27; m3) have dimensions 1, 2, 2,2 by [Kl, Theorem 7.16]; this is not compatible with
the form Z + §e A. The difference is that there are two more elliptic terms in the trace formula in
this case.

(b) Some of our results also incorporate unramified (i.e., even conductor exponent) supercuspidal
representations in addition to ramified ones. Proposition generalizes the A(mp) = 0 case of the
above theorem to allow for prescribed supercuspidals of any conductor exponent, giving conditions
under which the dimension is just the main term. In §4.4] we indicate how one can extend Theorem
- to incorporate depth zero (conductor p?) supercuspidals at certain places.
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(c) The explicit calculations of tr(Wr|SpeV(N)) that yield (1.4) and (1.5)) (see (4.12)) and (4.13))

come from |[M3l Proposition 3.2] and [Mb5], §4.2] respectively, and are obtained from the (classi-
cal) trace formula for Atkin—Lehner operators. (These references contain a couple of typograph-
ical errors, which we fix in the appendix.) Similar methods should yield an explicit formula for
tr(Wr|SEV(IN)) in general, but we do not attempt to carry this out here.

(d) The factor L;lp appearing in the main term is the formal degree of 7, relative to the

Haar measure for which meas(PGL2(Zy)) = 1. (See Lemma and below.)

(e) The special case of in which all 7, = 1 was first given in [K, Theorem 1.2]. As mentioned
earlier, a surprising feature of the more general case (and also (|1.5))) is that the elliptic term
is the same — it is unchanged if we increase the conductor exponents of the m,’s.

rp—1

In We give an explicit model for the unitary ramified supercuspidal representations of GL2(Q)),
following Kutzko. In @ we show that the Galois orbit of a given m, as in Theorem consists
of all supercuspidals of PGL2(Q,) with conductor p?»t1 that have the same E, and ¢, as mp.
This is used in to prove that dim SV (N;m7) depends only on the Galois orbits of the local
components of 7. It follows that the non-archimedean part of the relevant elliptic orbital integral
depends only on NV, the fields F,, and er,.. The trace of the Atkin-Lehner operator then provides
an additional constraint that determines the value of this integral, yielding . We remark that
computing the trace of a Hecke operator T}, on Sp¥(N;mr) with n > 1 will generally involve more
than one elliptic orbital integral, and so its determination would require more information.

Below we will discuss further context for Theorem .1l

1.2. Relation to root number bias. For the levels that we consider, Theorem identifies more
precisely where the local and global root number biases in [M3| [M5] arise. E.g., if M = 1, then
we see that the global root number bias in [M3] is only coming from the collection of ramified
supercuspidals associated to the quadratic extensions E,/Q, which make A(m7) = 1. We remark
that under certain congruence conditions, one can also deduce this from considering the action of
quadratic twists on these spaces (see [M5], §7]).

Further, from the perspective of the trace formula, the reason for the bias is simply that the local
root number appears in the matrix coefficient for m,. It factors out of the relevant local orbital
integral (see below), leading directly to the root number e, in .

1.3. Relation to Galois-invariant decompositions. We have been discussing the decompo-
sition of Sp“V(N) according to all possible local components at p|7T. However, for arithmetic
investigations it is desirable to decompose S;“V(NN) according to Galois orbits of newforms. Given
a Hecke eigenform f(z) = > a,q™ normalized so that a, = 1, its Galois orbit is the set of newforms
fo(2) = Y o(an)q™ for o € Aut(C), or equivalently, Gal(Q/Q). This action extends C-linearly to
a Galois action on SPV(N). When N = 1, Maeda’s conjecture asserts that there is a single Galois
orbit of newforms.

There is no apparent way to detect the Galois orbits of newforms in SP¢¥ () directly via the
trace formula. The best one can aim for is to decompose the space according to the Galois orbits of
local representations m, at each place p | N. This leads to a decomposition of SV (NN) in which each
subspace summand is globally Galois-invariant, but not in general minimally so, i.e., each summand
may contain multiple Galois orbits. However, it is expected that generically each summand is
spanned by a single Galois orbit, at least after separating out non-minimal twists and CM forms.
(See, for example, [LSL M2, [CM|, [DPT] for this philosophy, if not this exact statement.)

Suppose N is given by as above. For p > 5, we will show in Proposition that the
2(p — 1)p"~! supercuspidal representations of PGLy(Q,) of conductor p?"*! are partitioned into
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exactly four Galois orbits, parametrized by the pairs (E,, €) giving the ramified quadratic extension
E,/Q, (which specifies the local inertial type) and the Atkin-Lehner sign €,. One feature of
Theorem is that the dimension depends only on such pairs, i.e., the local Galois orbits of the
fixed components at the prime factors of 7. Thus one can reinterpret the theorem as a formula for
the dimension of the subspace of Sp°V(NN) determined by prescribing local Galois orbits for each
p|T. Namely, each local Galois orbit of conductor p?"*! consists of % - p"~1 supercuspidals, so
one merely needs to multiply the dimension formula in Theorem by a product of factors of this
form.

We explicate this in the simple case that N = p>"*1 and T = p.

Corollary 1.3. Let k > 4 be even, p > 5, r > 1, E,/Q, be a ramified quadratic extension, and
ep € {£1}. Write SPV(p*t1 Ep,ep) for the (Galois-invariant) subspace of SP(p*™ 1) spanned
by newforms with local component m, dihedrally induced from E, with Atkin-Lehner sign ¢,. Then

dim Sp¥ (p* T Ep, gp) =

bt (250) @ o 4 e, A o T
where A(E,) =1 if E, ~ Qu(v/=p) and 0 otherwise.
Remark 1.4. One can also deduce the r = 1 case from [K|, Theorem 7.17].
Note that a newform of level p?"+! must have a rationality field which contains
(1.6) QGr)" = QG + &) = Q) NR
for ¢, a primitive p"-th root of unity (see [M4] or Proposition , so each Galois-invariant space

o r—1
= %. This provides a simple

Snew (p2rtl B, e,) must have dimension a multiple of %qﬁ(p’")
sanity check on the corollary.

Corollary often allows us to identify the local components 7, (up to local Galois conjugacy)
for global Galois orbits from the sizes of the Galois orbits together with the Atkin—Lehner signs.
This is considerably simpler than the algorithm presented in [LW]. (See also [M4] for a partial

analogue when p = 3.)

Example 1.5. When k = 4 and N = 1331 = 113, Corollary says that dim S}V (113; E,, ;)
is 75 if B, ~ Q11(v/11) and 75 + £,10 if E, ~ Qi1(v/—11). One can check in the [LMFDB]| that
there are siz Galois orbits of newforms in S}V (N). They have sizes 5, 5, 60, 75, 75, and 80 and
Atkin—Lehner signs +1, —1, —1, —1, +1 and +1, respectively. Necessarily, the two orbits of size
75 have local components w11 dihedrally induced from Qll(\/ﬁ) and the other four orbits have 711
dihedrally induced from Qq1(v/—11).

We remark that the two orbits of size 5 each consist of CM forms, with CM by Q(v/—11).
Thus there are ten CM forms in SV(113) and 10 is precisely the size of the secondary term in
Corollary when A(Ep) # 0. There is a similar numerical coincidence whenever p = 3 mod 4. So
at first glance one might wonder whether the secondary term in Corollary[1.3 can at least partially
be explained by the existence of CM forms. However, since the two orbits of CM forms occur in
spaces with opposite Atkin—Lehner signs, there does not seem to be a direct link. Furthermore, CM
forms do not occur in SP (p* 1) when p =1 mod 4. (Such a form would have to have CM by an
imaginary quadratic field with discriminant dividing p**1, but there are no such fields.)

Example 1.6. Let k = 4 and N = 3125 = 5°. Here the newforms have not been computed in the
LMFDB, but dim S¥°¥(5°) = 600 and we can compute the Hecke polynomial hy for Ty acting on
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S5ew(55) in Sage. Since hy has distinct irreducible factors of degrees 140, 150, 150 and 160, these
must be the sizes of the Galois orbits of newforms. By Corollary [I.3, the orbit of size 150 & 10
corresponds to a newform f with local component s dihedrally induced from Qs(v/5) = Qs(v/=5)
and Atkin—Lehner sign +1.

1.4. Other related work. Several authors before have considered the problem of asymptotics
for dimensions of newspaces with prescribed local ramified components or inertial types. See for
instance [We] for prescribing arbitrary inertial types in the more general setting of Hilbert modular
forms, and [KST] for prescribing supercuspidal components for more general automorphic forms.
This amounts to determining the main term in the trace formula, which involves the formal degree.
Theorem shows that, at least in our setting, the exact dimension formula is quite simple, with
the asymptotic being in fact an equality much of the time. See also the introduction to [K] for
more discussion of such asymptotic formulas. We discuss inertial types further at the end of §3.2

We also remark that the authors of [DPT] considered the problem of existence of cusp forms with
given components at the ramified places for sufficiently large weight. For supercuspidal components,
it is not too hard to deduce this from a simple trace formula. One consequence of our exact formula
is an effective lower bound for weights where all ramified supercuspidals of a given conductor appear.
For instance if p > 5, implies that all supercuspidals 7, of conductor 2r+1 occur in S;" (p?r+1)
for any even k > 4. (One can check it directly for small p and apply the trivial bound h(—p) < 2p
for large p.)

Acknowledgments. Support for this research was provided by an AMS-Simons Research En-
hancement Grant for Primarily Undergraduate Institution Faculty, to the first author.

2. SUPERCUSPIDAL REPRESENTATIONS OF CONDUCTOR p?'+!

In this mostly expository section we recall Kutzko’s construction of the unitary supercuspidal
representations of GLa(F') with odd-power conductor, for F' a p-adic field. Any such representa-
tion is compactly induced from a character of an appropriately-chosen open compact-mod-center
subgroup. We follow the description given in [Kul, §1] and [H2, §A.3.8] (see also [BH, §15,519]),
making some of the details more explicit for use later on.

Let p be a prime number, and let F' be a finite extension of QQ, with ring of integers o, maximal
ideal p, valuation v, and ¢ = |o/p|. Fix once and for all a uniformizer w € p and a character

P F — C*

which is nontrivial on o but trivial on p. In this section only, we set G = GLa(F'), and write Z
for its center, so Z = F*. This is also the only section in which we allow for a nontrivial central
character w.

Fix an integer » > 1, and let n = 2r + 1 > 3. The central character of a supercuspidal
representation of G of conductor p™ has conductor dividing p” ([T} Prop. 3.4]). Fix such a character

w:F* — C*
trivial on 1 4 p".

Proposition 2.1. Forn = 2r+1 and w as above, up to isomorphism there are exactly 2¢"*(q—1)
distinct supercuspidal representations of G having conductor p™ and central character w.

Proof. The case of trivial central character is explained in [T, Theorem 3.9 and its remark]. The
proof of the general case is actually the same, in view of the following fact: for a finite group G
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with Z a subgroup of its center, and w any character of Z,

G/z1= Y (dmn)?
welrr(G)
wﬂ"Z:w

where wr denotes the central character of w. In the proof and notation of [T, Cor. 3.6.1], this can
be applied with G = D*/ (w) U}, and Z = F*U},/ (w) U},, using

DX/ FXUp| = 2(g + 1)g* 1211, O
Let P = <§ ;) and for r > 1 define the open compact subgroup
. P (1497 p
2.1 14+ P = ,
21 o <ps+1 1+ps)’
s if r is even

for s=|%] =2} and s’ =[] =r—s= {s 1 e s odd, In [BHI, this group is denoted

Uy for A =3 = (g 3) We have an isomorphism
U /U™ — (o/p)?
induced by

(2.2) <1 +aw bw ) oy {(aad) mod p if r is even

cwtl 1+ dw® (b,c) mod p if r is odd.
Since w is trivial on 1+p”, it defines a character of (U"NZ)/(1+p") = (14+p*)/(1+p") = o/p®.
Hence there exists a unique
a=a, €o/p’
such that

(2.3) w(l +wd) = w(wof_ll)

for all d € o.
In Proposition [2.2 below, we will attach a character

X = Xtw: U —> C*
to each t € 0% /(14 p*). First we establish some notation. Fix ¢ € 0* and let

(2.4) gX:<0 t)eP

w wo

for o as in (2.3). The characteristic polynomial

(2.5) X? - waX —tw
of gy is irreducible over F' by Eisenstein’s criterion, so £ = F'[g,] is a ramified quadratic extension
of F. Notice that g, € og is a uniformizer since its norm is det g, = —tw. Furthermore, by [Se,

Prop. 1.6.17], the ring of integers of F is given by
0p =0+ 0gy-

The maximal ideal of of is
pr=p+og,=PNE.
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Using the fact that gi = wag, + wt, we find by induction that for £ > 0,

(2.6) pﬁE = pWﬂ + PWQJQX,
so in particular
(2.7) P = b + Py
Proposition 2.2. Fort € 0* as above and
1+w¥a wsb
28 k — ’ UT‘
(2:8) < o*tle 1+ w® d) €Y

define

(29) (k= (TEEZDN ) = w1+ =y (1),

Then x is a character of U™ depending only on t mod 1+ p* , with
(2.10) U C ker x.

Furthermore, x extends to a character of ZU" via x|z = w. Lastly, the element g, € G(F)
normalizes U" and

(2.11) x(9y '2gy) = x(x)
forallx € ZU".

o5t (b + te) + ¥ lad
w( ( )

w’f‘

1 +pr pr—l

2r—1 _
Remark 2.3. The group U = < b 1+ pr

) contains U?" but not ker xy. For example, the

!/
1 wsws 2t

matrix /
(—w5+1w5 -2 1

) € U” is not in U?"~! but it belongs to ker x.
14+ w¥d @b
ws—l—lcl 1+ ws’d/ € Ur’

o — (1T @ (a+ d) + @ ad' + w1 w'(b+ V) + @ (a'b+bd)
"\ @t e+ )+t (det+dd) 1+ @ (d+d) + @ dd + oY

Proof. First we check that y is a homomorphism. For &' = <

It follows that

x (k') = ¢((b + b’?)ﬂ—l—,_tgc +) N a(d + d’))

for a as in (2.3)), as required.
Noting that

= x(k)x(¥)

7Ds—l

L+p '
< pT+1 1 _|_pr—vp(a)> C ker x,
where 0 < vy(a) < s, (2.10) follows.
By (2.9) (whose third equality comes from ((2.3))), x(z) = w(z) for z € ZNU". We can therefore
extend x to a character of ZU".
Note that

1 (ot 1/w\ (p o\ (0 t\ [o o\[0 t\ _
9 Pox = ( 1/t 0 p p)\w wa) \p o)/ \w wa =F
Consequently, g, normalizes U" = 1 + P". Furthermore, for k € U",

V(g2 kgy) = ¢<tr((k - l)gx)> _ w(tr(gx(k - 1))) (),

w” w”
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giving (2.11). O
Henceforth we will view x = x; ., as a character of ZU" as in the proposition. Following [Kul, Def.
1.5], let A, = Ay, be the set of characters A of E* that satisfy A\|px = w and whose restrictions to

(2.12) EXNU" =14p% +p°gy =1+py = Up
(see (2.7)) coincide with the restriction of x to this set. In the simplest case where n = 2r +1 = 3,

A, = {x} is a singleton set.
Recall that the level of A is the smallest integer £ > 0 such that A is trivial on U;_f;rl =14+ p]grl.

Lemma 2.4. Let A € A,. If pp is odd, then X\ has level n —2 = 2r — 1 and \ determines t, and
hence x. If pr |2, then the level of X is < n — 3 and A does not determine x.
Proof. By (2.6),
Pyl =pE =0+ gy
Sincer>1,n—2=2r—1>r, sol—l—p%dg 1+p CU". Thus for a,c € o,

1+ aw” ctw™ 1

cw” 1+aw” + cwra>) = ¥(2tc)
using the fact that w is trivial on 1 + p”. If pg is odd, this is a nontrivial function of ¢, so A is
nontrivial on 1+ p’% 2. On the other hand, by (2.10), A is trivial on Up~' C U"~! = U?". Thus )
has level n — 2. If pg | 2, then ¢(2tc) = 1 and so A is trivial on Up 2.

Similarly, for any b € 0, 1 4 bw®g, € Uy, by (2.12), and

. 1 btwo® sl 2bt
A1+ bwgy) = X((bws D114 bw3+1a)) = w(l+ b a)p(—)-

M1+ aw” + e’ lgy) = X((

Thus, given the fixed central character w, A determines t € 0% /(1 4 p*) when p is odd, but t is
only determined modulo 1 4 p =) if p| 2. O

Fix A € Ay and consider the restriction A| 0x: By (2.10)), it may be viewed as a character of the
finite group

(2.13) 05 /UR™ = j1g1 x (URJUR),
where /1,1 € 0™ consists of the (¢ — 1)-st roots of unity. (Since E/F is ramified, they both have
the same residue degree ¢.) An explicit parametrization of A, ., could be given using the structure
of the above abelian group, given in [NJ.

In general, if G is a finite abelian group with a subgroup H, then restricting characters gives a
surjective homomorphism R R

Res: G — H

of the dual groups. Thus each character y € H has exactly |G/H| distinct extensions to G. In our
situation, the given character y (restricted to F*U},) has

log/0" Ukl
extensions to 0. Noting that pl No = p* as in (2.7)), we find

log/p7 ! _

N e N s
ofp T T

(2.14) los/0*Ug| =
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Finally, given an extension X of x to 0} as above, it can be extended to E* by defining it on the
prime element g,. In view of (2.5, we must have

AMgy)? = Mwt + wagy) = w(@)A(t + agy).

Both factors on the right-hand side are defined, since ¢t + ag, € 0. There are thus two choices for
A(gy) € C. This proves the following.

Proposition 2.5. Having fized w, there are qslfl(q — 1) characters x as in (2.9), corresponding to
the set of t € 0 /(1 +p*'). For each such ¥,

[Ay| = 2¢°.
Consequently, Ay, =, Ay = U, Ao has 2¢" 1 (q — 1) elements.
Now fix x and define
(2.15) Jgr=E*U".
It is an open subgroup of G containing, and compact modulo, Z. For A € A, we may extend x to
a character of Jg , by
xa(@k) = Az)x (k)
for x € E* and k € U". We then define the compactly induced representation

Ty, = c—Ind?Em (xa)-

In view of the fact (Lemma |2.4) that A\ determines x when p is odd, in such cases, we can write 7y
instead of 7y, .

Proposition 2.6. For x) as above, my, (or simply 7y if p is odd) is irreducible and supercuspidal
of conductor p"™, where n = 2r+1. The 2¢"~*(q—1) representations Ty, thus obtained are mutually
inequivalent, so they comprise the set of all supercuspidals of conductor p™ and central character
w. The new vector of my, 1is supported on the double coset

(2.16) Ti,r <wr 1) Ki(p"),

0~ 0

where K1 (p™) = (p" 14 p"
(2.17) e = Mgy) € {£1}.

Remark 2.7. In the notation of [BH §15], 7, is the representation attached to the cuspidal type
(J,2r —1,mw "gy).

Proof. Trreducibility and supercuspidality are proven in [Ku, Prop. 1.7], with inequivalence proven
in [Kul, Prop. 2.9]. See also [BH, §15].

We will verify momentarily that m,, has a K (p?r+1)-fixed vector, so that the conductor divides
p?"+1. Using the fact [T}, Prop. 3.5] that E/F is ramified if and only if the conductor exponent is
odd, along with the count of supercuspidals of a given conductor and central character, it follows
by induction on r that the conductor of ,, is exactly p2rti,

In order to show that 7, contains a well-defined K (p™)-invariant function on the double coset

(2.16]), we need to show that xx(h1) = xa(h2) whenever
(2.18) h(® 1 )or=ha(™ 1)g2

>. When w is trivial, the root number of my, 1is
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for some hy,hy € Jg, and g1, g2 € Kq(p™). Write h; = gi@'ziki for d; € {0,1}, k; € U", and z; € Z.
From the valuation of the determinant in (2.18) we conclude that d; = do and z; 12 € 0. So
without loss of generality we can assume that h; = z;k; with z; € 0. We may then write

1 1y (T a b @ ([ a bw”
b=z aky k= ( 1) (w"c 1+w"d> ( 1> N <CW’"“ 1+w"d>

where (w‘%c 1+;nd) = gggl_l € Ki(p"). As k;lkl € U", the lower right entry of k belongs to
2y 121 +p*. But this entry also equals 1+ w"d. It follows that 2y 121, and hence also k, belongs to
U". Therefore we can evaluate x (k) = x(k) using (2.9)), giving

beo® + tew® aw"‘s/d> _1

x(k) = (F—

wos—1
as required.
Now assume w is trivial, so @ = 0 and g, = (w t). Let ¢ be the newvector of 7 = 7, satisfying

¢((¥" 1)) =1. Then
W((gn o=co

for the root number ¢ of 7, [Schl, Thm 3.2.2]. So

7 P (T ) =0(n 7))
(o V" ) (7 ) (1) =mie0 =6

Note that A\(gy)? = AMtw) = w(tw) = 1 since w is trivial. O

€

3. LocAL GALOIS ORBITS

We continue the local setup and notation of the previous section. In particular, F' is a p-adic
field.

3.1. Galois action. The automorphism group of C acts on complex representations of a group by
automorphisms of the coefficients. This action is given in detail as follows. For V' a complex vector
space and o € Aut(C), let V7 denote the vector space whose underlying group is V', but with scalar
multiplication given by a-v = o~ '(a)v. If G is a group and 7 : G — GL(V) is a representation,
we let 77 denote the representation of G on V7 defined by 77(g) - v = w(g)v. We say that a
representation 7' : G — GL(V’) is in the Galois orbit of 7 if 7’ ~ 7% for some o € Aut(C).

If (v, w) is the canonical bilinear pairing on V' x V* then (V?)* may be identified as a set with
V*, with the pairing on V7 x (V?)* given by

(v,w0), = o((v,w)).

For example, (X-v,w), = o({c" (N)v,w)) = A (v,w),. Furthermore, if ¢(g9) = (7(g9)v,w) is a
matrix coefficient for 7, then o(¢(g)) = (7?(g)v,w), is the corresponding matrix coefficient for 7.
In particular, if V' = C and x is a character of G, then x?(g) = o(x(9))-

If 7 = Ind%(7) for a representation (7, W) of a subgroup H of G, then it follows immediately
from the definitions that

(3.1) 77 = Ind% (79).

One corollary of this observation is the following.
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Proposition 3.1. Suppose m is an unramified principal series representation of PGLo(F') with
Satake parameters {a,a~'}. Then 7% is the unramified representation with Satake parameters

{o(a),o(a) 1}

3.2. Galois orbit of a ramified supercuspidal. Our goal here is to determine the Galois orbit
of a ramified supercuspidal representation. A direct proof is possible using arguments similar to
what appears below, but it is a bit easier to work on the Galois side of the tame local Langlands
correspondence, which we now recall (see [BH, §34]).

Throughout this section, F' is a finite extension of Q, for a prime p # 2. Let E//F be a quadratic
extension, and ¢ an admissible character of E*. (This means that £ does not factor through the
norm map Ng/p, and if E/F is ramified & |U}3 also does not factor through the norm map.) Via
class field theory, £ can be viewed as a character of the Weil group W, and its induction

pe = Indy” (€)
is a smooth irreducible 2-dimensional representation of Wr. By [BH] §29.2],

det pe = ng/p&|px

where g is the quadratic character of F'* associated to E/F' by class field theory. The tame local
Langlands correspondence associates to pe the dihedral supercuspidal representation 7(p¢) := 7y,
where A = Ag€ and A¢ is the character of E*/U} associated to (E,&) as in [BH, §34.4]. In
particular, A¢|px = ne/r, and if E/F is unramified then A¢ is unramified quadratic. Since p # 2,
every supercuspidal representation of GLy(F') is obtained in this way.

We will focus on the case of trivial central character, which means {|px = ng/p. Consequently,

if ¢ denotes the Gal(E/F)-conjugate of &, then &(x)&(z) = §(Ng/p(z)) =1, 50 & = ¢!, Note that

Via §3.1] Aut(C) acts on the set of (isomorphism classes of ) n-dimensional Weil (or Weil-Deligne)
representations, as well as on representations of GL,(F'). Furthermore, the local Langlands cor-
respondence commutes with this Galois action [HI, §7.4]. Applying to pe, it then follows
immediately that

(3.2) 77 =7(peo).
In addition, from the definition of the Galois action on representations of GL,,(F') we see that it
preserves conductors.

The equality gives one description of the Galois orbit of a dihedral supercuspidal rep-
resentation. We will require a more explicit description in the case of a ramified supercuspidal
representation m = m(p) (see Proposition . In this case, there is a unique ramified quadratic
extension £ = E; of F' such that p is induced from E (see the proof of [BH, Theorem 34.1]) and
thus by FE is an invariant for the Galois orbit of .

Say m = m(p¢) is a supercuspidal representation of PGLy(F') of conductor exponent 2r 4 1. Then
£ : W& ~ EX — C* is a character of conductor exponent 2r ([Sch, Theorem 2.3.3]) such that
¢|px = ng/p- Choose uniformizers wp, wp of F and E so that w2 = wp. Then {(wg) = +1 since
&(wr) = 1. Note that {(wg) is closely related to the root number of 7 since we can take wp = gy
due to the assumption of trivial central character, so by ,

Ex = /\(WE) = {(wE)Ag(wE)

Because {7 (wg) = {(wg) € Q for any o € Aut(C), the Galois orbit of 7 is determined by (i) E,
(ii) £(wEg), and (iii) the Galois orbit of §|°E'
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Let ¢ = (A5§)|°§' Since E/F is ramified, 0} = 03 Uf, so A$|o,§ factors through o3 /(o5 NUL)
on which it agrees with 7. In particular, this restriction is quadratic and only depends on E.
Thus
(€)= AZE e = At = (€7
So it is sufficient to study the Galois orbit of ¢’. The advantage of working with ¢’ is that it factors
through o5 /0 xUZ (see (2.13)).
2r

Lemma 3.2. Suppose E/F is ramified. Then a character of o} /o Uz is nontrivial on U?ET_I if
and only if it is of the form & for an admissible character & of conductor 2r such that {|px = NE/F-

Proof. Given § as above, | 2r—1 = £'[;;2r—1 is nontrivial by Lemma
E E

Conversely, suppose 7 is a character of o5 /0 U# . By [Se, Cor. V.3.3] (for which in the present
context we have t = 0 and 1 (n) = 2n),

Npp(Uy ') = Ngyp(U) = Up CUF C kery.

If n is nontrivial on U%T_l, it follows that 1 does not factor through the norm map. So it comes
from an admissible character &. ([

Consequently, understanding the Galois orbits of ramified supercuspidals requires understanding
the structure of 05 /o JUZ =~ (05/U#) /(0 /Ur). This group has order ¢" (see (2.14)). Its structure
can be understood from that of unit groups mod higher unit groups, as determined in [N]. However,
the structure of the latter is a bit technical and breaks up into several cases. Essentially, the
difference in the p-ranks of 0% /U# and o3 /U is typically [F : Q,] when r >F 0, so generally
this quotient is not cyclic. For simplicity, we will just determine certain hypotheses under which
o5 /o UZ is cyclic.

Lemma 3.3. Suppose E/F is a ramified quadratic extension and r > 1.
(1) If o /o UZ is cyclic, then F/Q, is totally ramified (including the possibility F = Q,). If
F/Q, is totally ramified, then taking r =1, o) /0 U3 is cyclic of order p.
(2) If F=Q, and p > 5, then o}/o U is cyclic of order p.

Remark 3.4. When F = Q3 and r > 2, the quotient is not cyclic, [R] §13].

Proof. (1) Since 05 /0xU% is a quotient of 0} /o U, if the latter group is cyclic, so is the former.
Note that

05/05UE = (0},/UR)/(05/Ur) ~ Up/Uk,
which is isomorphic to the additive group of F,. This is only cyclic when ¢ = p, i.e., F//Q, is totally
ramified.

(2) By (1), we may assume r > 2. Say E = Q,(v/d) with d a squarefree integer and p > 5.
Generators and relations for oy, /UZ are determined in [R] §13]. It is isomorphic to the product of
F) and a p-group of p-rank 2. The F; factor is generated by an element of 05, and the p-part is
generated by 1+ p € oy and 1+ Vd. Hence 05/ UE;U%T is generated by the single element 1 + V/d,
which has order p". O

Suppose 0% /o RU# is cyclic, necessarily of order ¢" = p". The primitive characters £ of 03 /o RUZ

are those which are nontrivial on Ug_l. Since 0}/ OEUif—l has order p"~!, the imprimitive char-
acters of o,/ o;U%?" are those with order dividing p"~!. Hence the primitive characters ¢ are in
(non-canonical) bijection with the p”-th roots of unity which are not p”~!-th roots of unity, simply

by specifying & on a fixed generator. Two such characters are Galois conjugate if and only if they



14 ANDREW KNIGHTLY AND KIMBALL MARTIN

have the same order. We see that there are (p—1)p"~! primitive characters, forming a single Galois
orbit.

Proposition 3.5. Suppose p is odd and r > 1. Assume that either (i) F/Qy, is totally ramified
(this includes the case F' = Qp) and r = 1, or (ii) F = Q, for p > 5. Then there are precisely four
Galois orbits of smooth irreducible representations © of PGLo(F') of conductor exponent 2r+1, and
a complete set of invariants for the Galois orbit of 7 is the pair (Er,er), where Ey is the ramified
quadratic extension of F' attached to w and £, is the root number of w. Moreover, with notation as
n , Gal(Q(¢r)T/Q) acts transitively and faithfully on the Galois orbit of such a .

Remark 3.6. The case of F' = Q) is also implicit in the proof of [DPT) Theorem 2.7], though the
argument there is somewhat different.

Proof. Let m = m(pg) and & = 7(pg) be supercuspidal representations of PGLz(F) of conductor

exponent 2r + 1. Suppose Er = Ez = F and {(wg) = {N(wE), where w? is a uniformizer of
F. Under the given hypotheses, f = 1, so by the preceding discussion there exists o € Aut(C)
such that §~|0§ = §U|°f;' But then 5 = &% on E* as well, so # = 7. Since there are exactly two
possibilities for E and two possibilities for {(wg) € {£1}, it follows that there are exactly four
possibilities for the Galois orbit of w. Further, using the fact that the local root number e, is the
eigenvalue of the Atkin—Lehner operator W on a newvector in , it is easy to see that ¢, is also an
invariant of the Galois orbit of 7 that can be used in place of the related parameter £(wg).

It remains to prove the last statement. A given 7 as above is parametrized (in a Galois-equivariant
way) by the pair {£,¢71} since € and ¢! induce isomorphic supercuspidals. By the preceding
discussion, ¢ is determined by (i) {(wg) € {£1} and (ii) the primitive p"-th root of unity £(f)
where 3 is a generator of the cyclic group o3 /orU# . Since Gal(Q((yr)™/Q) acts faithfully and
transitively on the collection of 2-element sets {¢,(~'} as ¢ ranges over primitive p"-th roots of
unity, it also acts faithfully and transitively on the Galois orbit of 7. U

Remark 3.7. In general, there are more than four Galois orbits of supercuspidal representations of
PGLy(F) having conductor exponent 2r + 1. For instance, if ¢ = p! > p, while the values of a

character ¢ can be chosen independently on different generators aq,...,a; of the noncyclic group
05/0xU#, Galois automorphisms do not behave independently on the elements &(a1), ..., &(ar).

Finally we relate the above discussion to inertial types. We say that two smooth irreducible
representations m, 7’ of GLy(F)) are in the same (inertial) type if their Langlands parameters p, p/
have isomorphic restrictions to the inertia group Ir C Wg. If 7 is supercuspidal, then 7’ is in the
same type as 7 if and only if 7/ ~ 7 ® y, where x is an unramified character of F*. See [H2] for
more details.

Let m = m(pe) be a supercuspidal of PGLy(F) of conductor 2r + 1, and x be the unramified
quadratic character of F*. Then 7 ® x = m(pe ® x) is the only other representation of PGLy(F')
with the same inertial type as w. The Langlands parameters for both 7 and 7 ® x have the same
restriction §|U§ to the inertia group Iy of E. Further, 7 and 7 ® x have opposite root numbers (e.g.,

see [D} (5.5)]). Hence under the hypotheses of Proposition we see that the Galois orbit of the
inertial type of 7 (among representations with trivial central character) consists of all supercuspidals
7' of the same conductor such that E; = E,.

Remark 3.8. In [DPT], the authors studied Galois orbits of inertial types. In fact, because the
inertial type is not a fine enough invariant for their end goal, [DPT] augment inertial type Galois
orbits with “minimal” Atkin—Lehner signs. We suggest that alternatively one might consider Galois
orbits of representations as above, rather than Galois orbits of types together with a sign.
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When p = 3 and r = 1, there are only four supercuspidal representations of PGL2(Q3) of con-
ductor 33. Case (i) of the above proposition implies that the Galois orbits of these representations
are singleton sets. (It is asserted in [DPT) Theorem 2.7] that there are four Galois orbits of local
inertial types in this situation. But this cannot be true since it would imply that there are eight
Galois orbits of supercuspidals of conductor 33.)

4. DIMENSION FORMULAS

4.1. General setup. Let G = GLg, Z its center, and G = G/Z. Let A be the adele ring of Q, and
normalize Haar measure on G(A) so that

meas(G(Q)\G(A)) = 7/3
with G(Q) having the counting measure. Write K, = GLa(Z,), K, its image in G(Q,), and
normalize the Haar measure on G(Q)) so that meas(K,) = 1. There is a unique choice of Haar
measure on G(R) so that the global measure on G(A) fixed above is the restricted product of the
local measures.

We will need an explicit expression for the formal degree of a supercuspidal representation. The
following is a special case of a result of Carayol.

Lemma 4.1. Let o be a supercuspidal representation of GLa(F') of conductor q°. Then the formal

degree of o, computed relative to the Haar measure normalized by meas(K) =1, is

-1 _r—1 e 13
dg:{ 5—q if c=2r+1is odd

(4.1) o .
(g—1)q" if c=2r is even.

In particular, having fixed the measure, the formal degree depends only on the conductor of o.

Proof. In [Car, §5.11], Carayol computed the formal degrees of the supercuspidal representations

of GL,(F). Using the measure measc normalized by measc(Ko(p)) = n~1(¢" — 1)~ (¢—1)" where
Koy(p) = 0*K;(p) is the Iwahori subgroup, for o of conductor ¢¢ he obtained the formal degree

q" — 1q%((n71)(cfn)+bfn)

¢" -1 ’

where b = ged(c,n). Taking n = 2 and setting meas(K) = 1, we have

d¥ =b

meas(Ko(9) = (K Kap)] ™ = (q-+ 1) = = measc (Kafp).

So in our normalization, his result gives

where b = ged(c, 2). O

Now fix three integers M, T, S which are pairwise relatively prime with S and T square-free, and
write

(4.2) N =M HpZTP Hp2rp+1

plS plIT
where 7, > 1 for each p|ST. Fix a tuple mgr = (mp)y 97 of supercuspidal representations of
G(Q,), with m, of conductor p?» (resp. p*’»*1) if p| S (resp. p|T). For each p|ST, we may
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write m, = C—Indi((@” )()\p), where J,, is an open subgroup which contains, and is compact modulo,

Z, = Z(Qp), and A, is an irreducible representation which is trivial on Z,, subject to:
o dim), =1ifp|T
o J,=27,K,if p|S.
We will define a Z(A)-invariant test function f : G(A) — C with the property
tr R(f) = dim S (N; wsr),
where R(f) is the operator on L?(G(Q)\G(A)) defined by

R(f)p(z) = [ )f(g)cb(wg)dg-

G(A
For p | ST, define a local test function fr, : G(Q,) — C as follows:

de, p(x) ifx € Jyandp|T
(4.3) fry(@) = trX\y(z) ifz€J,andp|S
0 itx g Jp,
where dr, is the formal degree of 7, given in . Thus, fr, is the complex conjugate of a matrix
coefficient of 7, when p| T and the sum of dim A, = d, (conjugated) matrix coeflicients when p | S.
At primes £ 1 N, we let fy be the characteristic function of Z,K,.
Let ¢ be a prime dividing M, and let Ny, = v4(N). For 0 < j < Ny let

A b A
Ko(¢’)q = {<z d) € Kylce ¢Zy}

as usual, and define ¢,; : G(Qq) — C by

L meas(Ko(q’),)"t if g € Z,Ko(¢’),
¢q] (g) - 1
0 otherwise.

Used as a local test function in the trace formula, ¢,; serves to project the automorphic spectrum
onto its Ko(g’),-fixed vectors. We define f; to be the linear combination

(4.4) fo= ¢qu — 2(;5qu—1 + ¢qu72,

where ¢,; is taken to be identically 0 if j < 0. The role of f; is to give the trace on the locally
¢Ne-new part of the spectrum. Indeed, using [Cas, Corollary to the proof], one shows that for
any infinite dimensional irreducible admissible representation m, of PGL2(Qy), trmy(f,;) € {0,1} is
nonzero if and only if cond(m,) = ¢™Va.

At 0o we take foo = di(mr(g)v,v), where 7y is the weight k discrete series representation of
G(R), v is a lowest weight unit vector, and d, is the formal degree computed relative to our fixed
choice of Haar measure on G(R). This function is integrable over G(R) if and only if k¥ > 2, so this
hypothesis will be in force.

Let
f=Frsrun = foo [ Fro [ f2 ] fe € L' (G(A)).
plST  qlM  #N
By [K| Prop. 5.5 and Theorem 7.1], whose proofs carry over verbatim to the case with extra level
structure M included here, assuming k > 2 and also that T' > 5 is odd, we have

(4.5) dim $p (Nimsr) = e R(H) = 310+ 5o((; 7))
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for the elliptic orbital integral
(4.6) (v, f) = / _ flgtvg)dy,
GA(Q\G(A)

where G, is the centralizer of v in G. (There are up to two additional elliptic terms if T" € {1, 3}
or T is even.)

The orbital integral factorizes as the product of a global measure term and the local orbital
integrals

D(v, fp) = / gt vg)dg
G+ (Qp)\G(Qp)

for p|2N (cf. below). (We must fix appropriate Haar measures on the local groups G~(Q)).
See [K| §3.3] for details.) The difficulty in evaluating lies in computing <1>((1 _T), fr,) for
each p| ST. In the case where 7, has conductor p? or p?, this was done in [K]. The general case
is considerably more difficult, and computing ®(v, fr,) for general conductor and - remains open.
However, simply by considering the support of f;, we obtain the following, which extends [K| Prop.

5.6).

Proposition 4.2. Fiz N as in (4.2), with T > 5 odd. For each p|T, let E,/Q, be the ramified
quadratic extension attached to m,. Suppose that either

(i) for some p|T, E, # Qu(~/-T), or
(ii) for some odd p| S, (%) =1.
Then
(4.7) dim S2°V(N; wgr) = Ez/wa(M) 11 Ep%—l [ -1~
12 p|T 2 plS

for "% (M) as defined in Theorem[1.1]

Remark 4.3. The argument below shows that more generally without the hypotheses on 7', when
p|T and v € G(Q) is elliptic in G(Q,) with vy(dety) odd, ®(v, fr,) # 0 only when E, = Q,(7).

Proof. The identity term in (4.5 is given by
7r m
gf(l) = gdk H fq(1) H dry-
q|lM plST
Let 1 be the multiplicative function defined on prime powers by
. . o . 1
(e') = Ky : Kole')g] = meas(Ko(¢')g) ' = (14 )
for j > 0. Then by (4.4]) for a prime ¢|M we have
FaU) = w(@™) = 20(¢™ ) aw 21 + (¢ 7)o, 22,
where § is an indicator function. One checks easily that this coincides with ¢V (¢™V¢). Using (4.1])
and the fact (see, e.g., [KL, Prop. 14.4]) that dj = ’1—;1, we see that the identity term coincides
with the right-hand side of (4.7)).
By (4.5), it remains to show that ®(v, f) = 0 under the given hypothesis, where v = (1 *T).
If hypothesis (ii) holds, then the characteristic polynomial P, (X) = X2 + T factors mod p, so by

Hensel’s Lemma (using p # 2) v is hyperbolic (rather than elliptic) in G(Q,). This implies that
(v, fr,) =0 (see [Kl Prop. 4.3]), giving the result in this case.
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Now suppose that ®(v, f) # 0. Then for each p| T, f,(g71vg) # 0 for some g € G(Q,). Write
Uy’ for U™ in (2.1)), and similarly ¢, and X, for the ¢ and x determined by m, as in Proposition
Then the support of f, satisfies

ey, = By Uy € EfUp = 00, Q5 U, J QU

Since det(g~!vg) =T € Ly, g~ 17g must lie in the ramified component g,, ;U]}:

_ t a b
ek <p p) <pc d) € Qo

where in fact z € Z,. Taking determinants and dividing by p,
T/p= —z2tp mod p,

which shows that (—= =T/p ) = (%’) Since E, = Q,(y/pt,) this condition is equivalent to E
Qp(v/—T). It follows that under hypothesis (i), ®(v, f) = 0. O

4.2. Invariance of global dimension across local Galois orbits. Here we use Proposition
to show that the number of newforms with fixed ramified supercuspidal components 7, at a finite
set of primes p > 5 depends only on the Galois orbit of each .

Proposition 4.4. Let k > 2 and T > 5 a square-free odd integer. Let M > 1 be an integer
relatively prime to T, and write N = MHP|Tp2’"P+1 forry > 1, withrs =14if 3|T. For eachp|T,
let m, and 7T;7 be irreducible supercuspidal representations of PGL2(Qp) of conductor 2r, + 1 such
that Ex, = Ep and er, = €5 . Write mp = (mp) |y and 7 = () |[pjr. Then

dim SpV(N; ) = dim Sp (N 7).
Remark 4.5. We allow k = 2 since our proof does not rely on the trace formula.

Proof. By Proposition for every p|T we have m, ~ mp" for some o, € Gal(Q((yr»)T/Q). Let
n= Hp‘TpTP. Noting that Q(¢a) N Q(¢) = Q(Cged(ap)) = Q if (a,b) = 1, we have

Gal(Q(¢n)/Q) ~ ] Gal(@(Grr)/Q).

p|T

Hence there exists ¢ € Gal(Q((,)/Q) which has image o, in each quotient Gal(Q((y»)*/Q). In

particular, 75 = 7, for each p|T.

Now let f be a normalized Hecke eigenform in S}°¥(N;nr). The automorphic representation
attached to f has the form 7 = m ® ®p mp. The newform f7 (see Ei corresponds to the
automorphic representation 7 ® ®p my. This follows from Proposition together with strong
multiplicity-one and the fact that the latter is known to be a cuspidal automorphic representation
of GLa(Ag) ([Wal, Section 1.8]). Hence o defines a vector space isomorphism of SpV(N;mr) with
SRV (N; %) = SpeV(N; 7). In particular these spaces have the same dimension. O

4.3. Proof of Theorem [1.11

Lemma 4.6. Fir a tuple 77 = (mp), 7 as in Theorem u Define
(I)T — H (I) pr)
p|T
Then there exists It € C depending only on the r, such that
(PT = A(ﬂ'T)aEﬂ-TIT,
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with notation as in Theorem . Consequently (4.5) becomes

—1 21
(4.8) dim SPV(N;7p) = %w“eW(M )11 pr’“P‘l + A(rr)ers A,

1
p|T

where A is a constant depending only on k, N and T, and independent of the choice of .

Remark 4.7. When p | T, the definition of ®(, fr,) entails a choice of Haar measure on the compact

group G~(Qp). The choice is immaterial here but for concreteness we normalize to give it measure
1, and consequently

(v, fr)) = /G o I (s

Proof. By Proposition and (4.5), 7 depends only on the 7, the fields E,, and the &,,. We
already showed in Proposition that ®7 vanishes when A(7wr) = 0. So we may assume that

A(rr) =1, ie., E, = Qy(v/plp) = Qp(v/—T) for each p|T.
Let v = (1 _T). Since dety =T,

(4.9) or =] /G Frp (97 v9)dg = exp [ | / frp (93,9 7v9)dg
p|T (Qp) pIT Cp

by ([2.17), where C), = {g € G(Qp)| 979 € 9,, Q) OEPU;;”}. The value of the inducing character
Ap (hence fr, by (4.3)) on Q) ogp Up” is independent of &, = Ap(9y,). Thus, I7 (represented by the

product of the integrals over the C)) depends only on the conductors p2rotl

Globally we have

(4.10) O(y, f) = meas(G,(Q\G~(A)A(rr)er, Ir [ [ @(v, f2)-
ur
The result now follows from (4.5)), in view of the main term computed in Proposition O

To prove Theorem (1.1 we just need to compute A from the above lemma. By (1.2)),
(4.11) r(WrlSE(N) = Y dim S (Nyr) — ) dim SRV (N5 7).

Tri€rp=1 TriEnp=—1

of the mp’s.

The number of supercuspidal representations of PGL2(Q,) with conductor p?»*1 is 2p"»~1(p — 1),
exactly half of which have root number +1 (resp. —1), as described in It follows easily that half
of the tuples 7 have e, = +1 (resp. —1), so applying the trace formula on the right-hand side of
, the main terms all cancel out. Given p|T, of the possibilities for m,, half, or p"»~1(p — 1),
satisfy the non-vanishing condition that E, = Q,(v/=T). So after eliminating the main terms in
, the number of nonzero summands remaining is

177 -0,
p|T

By the above lemma, the nonzero terms that remain all have the same value, up to the sign e,
which is eliminated by the subtraction in (4.11)). Thus, in the notation of the above lemma,

(WlSpe (V) = AT - 1),
p|T

Solving for A, (|1.3) of Theorem follows from (|4.8)).
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Next, the calculations in [M3l Proposition 3.2] and [M5, §4.2] respectively, together with the
minor corrections made in the Appendix below, give the following, with notation as in Theorem

LI
e When M =1 and N # 27, we have

(4.12) tr(Wr|SEV(N)) = (—1)¥2bpo h(—=T) H(p —1)p L
p|T
e When T"'=p > 5 is prime,
(4.13) (Wl SE(N)) = (=12 (p = 1)p" " by (ary 5—p (M) h(—p).
We note that the constant by, in Theorem coincides with ¢y /2, where cr is given by S(N) in
M3l (1.1)] in the first case and by the class number coefficient in [M5] Table 2] in the second case.

The remaining parts of Theorem namely (1.4) and (1.5]), follow immediately upon substituting
the above formulas into ([1.3)).

4.4. Extension to allow depth zero supercuspidals. With the proof of Theorem [I.I] complete,
we indicate here how it may be extended so as to allow for prescribed depth zero supercuspidals at
certain places. First, by [Kl (6.22),(5.6)], when 7' = 1 mod p and cond(m,) = p?,

_ 2e, ifp=3mod4
B(, 7). ) = {7 P
0 if p=1 mod 4.

P p
to extend Proposition to also include prescribed depth-zero supercuspidals m,, Wz’j at each p|S

as long as e, = Ent s and T'= 1 mod S. One also needs to adjust for the fact that does not
hold in this case. Instead we need to consider S-minimal newforms, i.e., those whose level cannot
be rgduced at primes dividing S by twisting. Taking N = M leT p?rrtl le s p? with each rp > 1,
S,f‘mm(N) = @WST SpeY (N msr).

By similar (but slightly more involved) arguments to those that led to the proof of Theorem
assuming 7= 1 (mod S), T > 5 is odd, and r3 = 1 if 3| T', we find:

(When p = 1 mod 4, we have (;T) = (;1> = 1 and (ii) of Propositionapplies.) This allows us

. new . k—1 new pz_lr—l
(414)  dim S (Nimsr) = =" (M) [[E5—=p" " [[ - 1)
p|T p|S
tr(Werp|SSmin
- A(rsr)ene: (Wsr|Sp™(N))

— 1
[Lyr@ =D Tloqa pis 2

where A(mgr) € {0, 1} extends A(mr) by assigning the value 0 if p = 1 mod 4 for some p|.S, or if
T =3 mod 4 and S is even.

Remark 4.8. By [AL, Theorem 6(ii)], if p| S and f € Sp°V(N) is not p-minimal, then W, f =
(%) f- Thus one can compute Atkin—Lehner traces on S-minimal spaces from the traces on the
full newspaces and dimensions of d-minimal subspaces for d|S. For instance, when S = p is prime,
one has
. 1 .
tr(Wer|ST™(N)) = tr(Wsr|SPY(N)) — () (dim SE°(N)) — dim S,f"mm(N)) .
p

One can compute the dimensions of d-minimal subspaces by subtracting away dimensions of non-
minimal forms in a similar way to [Ch], which considers the (N-)minimal subspaces.
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APPENDIX: ERRATA TO [M3] M5]

Here we correct two mathematical typographical errors in the formulas for tr(Wr|SpV(N)) from
the published works [M3l, [M5] that were used in the proof of Theorem

(1) We used [M3, Proposition 3.2] to explicate this trace when M = 1, and to our knowledge
that statement is correct. However, the case of the proposition that we use here is also
stated in [M3| Theorem 1.2], but the definition of § there has a misprint. It should read
0 = 1if (Na, k) = (1,2) rather than if (N, k) = (1,2). This agrees with [M3, Proposition
3.2].

(2) We used the calculations of [M5, §4] to explicate tr(Wr[SpV(N)) when T = p is prime.
However, the equation just above [M5, Prop. 4.3] should read:

r—1 r—3 r—5
N=c (nAo(qT) —2nn0(q 2 ) + 5r25nAo(qT)) R’ (Ao)

=1 (0(4') = 20(4"F) + 6,250(4"T) ) (Do),

In loc. cit., the factor of 2 in the middle terms on the right mistakenly appears inside the
arguments of na, and o. The factor of 2 appears in the correct location in the definition of
N several lines earlier.

In context, g is a prime and r > 3 is an odd integer, so in fact this simplifies to

N=¢ <q% - q%?)) h'(Ap).
This does not affect the proof of Proposition 4.3 or Theorem 1.1 in [M5].
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