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Abstract

These are notes which grew out of a talk for general math graduate students with
the aim of starting from the questions “Which numbers are sums of two squares?”
and “Which numbers are sums of two cubes?” and going on a tour of many central
topics in modern number theory. In the notes, I discuss composition laws, class groups,
L-functions, modular forms, and elliptic curves, ending with the Birch and Swinnerton-
Dyer conjecture. The goal is not to explain any topic too deeply, but to provide some
context for how these seemingly disparate topics piece together to (attempt to) satisfy
the burning questions of classical number theory.
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Introduction

Number theory is about solving diophantine equations, usually in Z or in Q. These are
equations of the form

P (x1, . . . , xk) = n, (1)

where P is a polynomial with integer coefficients, and n ∈ Z. Given such an equation, there
are a couple of basic questions we can ask:

Question 1. Does (1) have a solution? (over Z or over Q)

Question 2. How many solutions does (1) have? (over Z or over Q)

Note the second question is a refinement of the first—the first question is just asking
whether the answer to the second question is nonzero or not, and occasionally it turns out
that the easiest way of answering the first question is by trying to answer the second.

We will focus on several explicit examples, such as P (x, y) = x2 + y2, P (x1, . . . , xk) =
x2

1 + · · · + x2
k and P (x, y) = x3 + y3. The first two, each term having degree 2, are called

quadratic forms, and the latter example is called a cubic form. For these polynomials, the
first question just reads: what numbers are sums of two squares? what numbers are sums
of r squares? and what numbers are sums of two cubes?

Besides their aesthetic appeal, exploring these questions will lead us on a safari adven-
ture where, if you keep your eyes open, you’ll get a glimpse of many fascinating ideas in
mathematics. During this tour, you can spy things like class groups, L-functions, modular
forms and elliptic curves in their natural habitat, and gain an appreciation for how they
interact and coexist within the world of number theory.

As mentioned in the abstract, these notes are based on a talk aimed at first and second
year math grad students at the University of Oklahoma in October 2015. Of course, there
are many more details here than what I could fit into a one-hour talk.1 (The talk covered
sums of two squares, brief remarks on more general binary quadratic forms, and then focused
on sums of two cubes.) I hope that these notes may be of interest both to students without
prior exposure to number theory, as well as those currently learning number theory, as
number theory is big world with many different roads leading into it. (Since this was based
on a talk for grad students, I assume some familiarity with abstract algebra, though a large
part of the story can be understood without this.) Even many students who have taken a
few number theory courses may not know every topic or connection I will mention here, so
it may at least prove useful as a cartographical assistant. (And the details about sums of
two cubes may not be known to many number theorists, including me.)

Feedback is welcome, as I hope to update and expand these notes someday, possibly
including brief introductions to topics such as higher composition laws (à la Bhargava) and
Siegel modular forms.

1I did not expect the number of pages of these notes to reach the number of lines on a cubic surface, but
it is not an unpleasing coincidence.
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1 Binary quadratic forms

My primary reference in preparing this section was my Number Theory II notes [Marb],
which lists additional references.

1.1 Sums of two squares

Let’s start with the basic question: which numbers are sums of two squares, i.e., what
integers n satisfy

x2 + y2 = n, x, y ∈ Z. (2)

It is clear that we need n ≥ 0. We do not require both x, y to be nonzero, so any square is
a sum of two squares by taking y, say, to be 0. For n ≤ 10, we see that 0, 1, 2, 4, 5, 8, 9,
10 are all sums of two squares, but 3, 6, 7 are not.

The first key to solving this problem comes from Brahmagupta’s composition law (7th
c.):

(x2 +my2)(z2 +mw2) = (xz +myw)2 +m(xw − yz)2. (3)

We only need the m = 1 case (which goes back to Diophantus, 4th c.) for x2 + y2 , but
it may be interesting to see one gets a similar law for the forms x2 + my2. This law for
m = 1 says that if two numbers are sums of two squares, then their product is also. In
other words, we can compose solutions to x2 + y2 = n1 and x2 + y2 = n2 to get a solution
to x2 + y2 = n1n2.

Using this, we can reduce the problem to solving (2) when n = p is prime. To explain
the reduction in the most basic setting, let’s just consider (2) when n = pq is a product of
two primes. First, if p and q are both sums of two squares then (3) tells us so is pq. Then
we need to understand what happens when either one or both p and q are not sums of two
squares. One case is obvious: for p = q, we get pq = p2 is a sum of two squares whether p
and q are sums of squares or not.

Here is a nice framework to understand this reduction. Having a solution to (2) means
we have a factorization,

(x+ iy)(x− iy) = n, x, y ∈ Z,

of n into 2 “smaller” numbers in Z[i]. One way to measure the size of a number in Z[i]
comes from undoing our factorization: the norm of α = x+ iy ∈ Z[i] (or more generally, in
α ∈ Q(i)) is

N(α) = αᾱ = (x+ iy)(x− iy) = x2 + y2.

(Here α 7→ ᾱ denotes Galois conjugation in Q(i)/Q, which happens to coincide with complex
conjugation in this case, but it will be different for real quadratic extensions like Q(

√
2)/Q.)

Hence N(α) is the square of the length of the vector from 0 to α in the complex plane.
Note we can rephrase (2) having a solution as saying n is a norm from Z[i]. It is easy to
check that the norm is multiplicative, which gives us Brahmagupta’s composition law (3)
when m = 1.

Now suppose n = pq where p is not a sum of two squares and q is another prime. Then
we have a factorization n = (x+ iy)(x− iy) with x, y 6= 0. This give us two factorizations
of n:

n = (x+ iy)(x− iy) = pq.
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One can define a notion of primes in Z[i], and the important feature for us is that Z[i] also
has unique factorization into primes. Since p is not a sum of two squares, it doesn’t factor
into “smaller” numbers in Z[i], i.e., p remains prime in Z[i]. However p cannot divide x± iy
(i.e., x±iy

p 6∈ Z[i]), so the prime factorization of (x + iy)(x − iy) is “not compatible” with
the factorization pq, contradicting the uniqueness of prime factorization. That is, pq is not
a sum of two squares. More generally, this kind of argument shows that if p is not a sum of
two squares, then n = pem is not a sum of two squares if e is odd and gcd(p,m) = 1.

Thus solving the two squares problem for n = p will yield the answer for general n ∈ N,
and here is the answer.

Theorem 1.1 (Fermat (1640)). A prime p is a sum of two squares if and only if p ≡
1 mod 4 or p = 2. More generally, a positive integer n is a sum of two squares if and only
if any prime factor of n which is 3 mod 4 occurs to an even power in the prime factorization
of n.

One way to go about proving this is to think about which primes p ∈ N factor in Z[i], or
equivalently, whether p is a norm from Z[i]. Some work is involved, and we won’t do it here.
However, I want to point out that this gives us an example of an important principle, which
we’ll come back to in our next example. Namely, Fermat’s theorem says that x2+y2 = p has
a solution if and only if there are no local obstructions, i.e., if and only if x2 +y2 ≡ p mod m
has a solution for all m. In fact, there’s only one important m to check: m = |∆| = 4,
where ∆ = −4 is the discriminant (see the next section).

That is, consider x2 + y2 ≡ p mod 4. The only possibilities for x2, y2 mod 4 are 0 and
1, hence we always have x2 + y2 ≡ 0, 1, 2 mod 4. A prime p is never 0 mod 4, and only
2 mod 4 for p = 2. We call this kind of priniciple, where “local” (mod m) solvability is
equivalent to “global” (over Z or Q) solvability a local-global principle.2

Regarding our second question, up to interchanging x and y and multiplying x and y
by ±1, one can show that there is only one way to write p = x2 + y2 for p ≡ 1 mod 4.

1.2 Positive definite forms

Having treated x2 +y2, we can ask about similar quadratic forms in x and y such as x2 +2y2

or x2 − xy + y2. Given such a form Q, it is not true that a composition law like the one in
(3), nor is it true that a local-global principle holds (i.e., one can not determine numbers, or
even just primes, represented by general forms just by taking congruences). Nevertheless,
Gauss in his youth discovered a miraculous composition law on collections of such forms. In
modern terminology—he defined a group law on appropriate collections of quadratic forms.
Moreover, one has a local-global principle for these groups of forms.

A binary quadratic form (over Z) is a polynomial of the form Q(x, y) = ax2 + bxy+ cy2,
where a, b, c ∈ Z and not all of a, b, c are 0. An important invariant is the discriminant is
∆ = b2 − 4ac.

Let ∆ < 0 and F(∆) be the set of positive definite binary quadratic forms of discriminant
∆. Positive definite means forms which only take on positive (or zero) values, so we exclude

2Note this local-global principle does not apply to the general equation x2 + y2 ≡ n mod 4. E.g., take
n = 3 · 7. Since 3 and 7 are both 3 mod 4, they are not sums of two squares, so neither is their product.
However 3 · 7 ≡ 1 mod 4, which is a sum of two squares mod 4.
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negative definite forms like −x2 − y2 (which only take on zero or negative values). The
condition ∆ < 0 implies that our form is either positive or negative definite, and not
something which takes on both positive and negative values like xy or x2 − y2, which are
called indefinite forms.3 (The theory of negative definite forms will follow from the that of

positive definite forms.) Given one such form Q(x, y) and τ =

(
a b
c d

)
∈ SL2(Z) (the group

of integral 2× 2 matrices with determinant 1), we can define

Qτ (x, y) = Q(x′, y′),

(
x′

y′

)
=

(
a b
c d

)(
x
y

)
.

In other words, Qτ is just obtained from Q by an invertible linear change of variables. It
will also be a positive definite binary quadratic form of discriminant ∆, and an integer n
will be represented by Qτ (i.e., Qτ (x, y) = n has a solution) if and only if it is represented
by Q.

Thus the action of SL2(Z) defines an equivalence relation on F(∆), called proper equiv-
alence. Define the set Cl(∆) of form classes to be the set of proper equivalence classes of
F(∆). Any Q ∈ F(∆) is properly equivalent to exactly one reduced form ax2 + bxy + cy2,
i.e., a form with |b| ≤ a ≤ c. It is easy to see the number of reduced forms of a fixed
discriminant must be finite, whence Cl(∆) is finite.

Theorem 1.2 (Gauss (1798?)). Cl(∆) is a finite abelian group, called the form class group
of discriminant ∆.

The order h(∆) of Cl(∆) is called the class number.
Here is a classical way to define Gauss composition. Suppose Q1(x, y) = a1x

2 + b1xy +
c1y

2 and Q2(x, y) = a2x
2 + b2xy + c2y

2 have discriminant ∆ and satisfy b1 = b2 = b for
some b, a1|c2 and a2|c1. (The notation a|c means a divides c.) Then c2

a1
= c1

a2
= c for some

c, and we define the composition Q1Q2 = Q3 to be the form Q3(x, y) = a1a2x
2 + bxy+ cy2.

Then the identity

(a1x
2
1 + bx1y1 + c1y

2
1)(a1x

2
2 + bx2y2 + c2y

2
2) = a1a2x

2 + bxy + cy2,

where x = x1x2−cy1y2 and y = a1x1y2 +a2y1x2 +by1y2 tells us this is a composition law in
Brahmagupta’s sense, i.e., if Q1 represents n1 and Q2 represents n2, then one can compose
the solutions to get that Q3 represents n1n2. Then one can show that given any proper
equivalence classes in Cl(∆), one can choose Q1 and Q2 as above, and the composition
respects proper equivalence classes.

A more insightful way of understanding Gauss composition is in terms of ideal classes.
Suppose ∆ is the discriminant of the quadratic field K = Q(

√
∆), then one can define a

correspondence between F(∆) and ideals of the ring of integers OK of K which induces an
isomorphism of Cl(∆) with the ideal class group Cl(OK).4 I will describe this correspon-
dence in our example below.

3The most famous indefinite binary quadratic form is x2−dy2, d > 0, which is appears in Pell’s equation
x2−dy2 = ±1. Solutions to Pell’s equation are interesting because they provide good rational approximations

to
√
d for large y, since d = x2

y2 ∓ 1
y2 .

4This also works if ∆ is not a fundamental discriminant, i.e., not the discriminant of some OK , by
replacing the ring of integers in K = Q(

√
∆) with a quadratic order O∆ of discriminant ∆, which will be a

subring of OK .
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Example 1.3. When ∆ = −4, we can compute there is only reduced form: x2 + y2, so
h(−4) = 1 and Cl(−4) just consists of the (class of) x2 + y2.

Example 1.4. When ∆ = −8, there is only one reduced form x2 + 2y2.

Example 1.5. When ∆ = −3, again there is only one reduced form x2 − xy + y2.

Example 1.6. When ∆ = −20, there are two reduced forms, Q1(x, y) = x2 + 5y2 and
Q2(x, y) = 2x2 + 2xy + 3y2, and the composition is such that Q2

2 = Q1. (Note, we know
Q2

1 = Q1 by (3).)

Example 1.7. When ∆ = −23, we get h(−23) = 3 and the reduced forms are Q1(x, y) =
x2 + xy + 6y2, Q2(x, y) = 2x2 − xy + 3y2, and Q3(x, y) = 2x2 + xy + 3y2. So Cl(−23) is a
cyclic group of order 3, generated by Q2 or Q3 and Q1 is the identity.

For the rest of this section, let me discuss the case of ∆ = −23, as I think it is more
interesting than the ∆ = −20 example (or the class number 1 examples), though the general
ideas apply to will arbitrary negative discriminants ∆. So take ∆ = −23 and Q1, Q2, Q3 as
in Example 1.7.

Here the associated imaginary quadratic field is K = Q(
√

∆) = Q(
√
−23). The right

analogue of the integers Z is the ring of integers OK = Z[1+
√
−23

2 ]. We have a norm
N : K → Q given by

N(a+ b
√
−23) = a2 + 23b2, a, b ∈ Q

It’s easy to check that for α ∈ OK , N(α) ∈ Z. It turns out OK is the largest ring in K
for which this is true, and is one reason why OK is nicer to work with than the subring
Z[
√
−23].5 We say two nonzero ideals I,J ⊂ OK are equivalent, and write I ∼ J , if

aI = bJ for some a, b ∈ OK − {0}. Note I ∼ OK if and only if I = aOK for some
nonzero a ∈ OK , i.e., if and only if I is principal. The product IJ is the ideal generated
by elements of the form ab, where a ∈ I, b ∈ J . This product defines a commutative group
law on Cl(OK), the set of nonzero ideals of OK modulo equivalence (i.e., modulo principal
ideals). We call Cl(OK) the (ideal) class group of K. Write [I] for the equivalence class of
I. Then [OK ] is the group identity and [I]−1 means the class of some J such that IJ is
principal.

An important theorem in algebraic number theory is that OK has unique factorization
of ideals into prime ideals. If all ideals are principal, then this means one has unique
factorization of numbers in OK into irreducible (prime) elements. In fact, OK has unique
factorization (of numbers) if and only if the class number hK := |Cl(OK)| = 1.

For our specific K = Q(
√
−23), one can check that there are 3 ideal classes, represented

by I1 = OK , I2 = (2, 1+
√
−23

2 ) and I3 = (2, 1−
√
−23

2 ). The group law is such that this is
the group of order 3 with I1 being the identity. Given some ideal I = Zα ⊕ Zβ, we can
associate the quadratic form QI(x, y) = N(αx − βy)/N(I). (Really, QI depends on the
basis {α, β} of I, but the proper equivalence class of QI does not.) I won’t define the norm
of an ideal, but just tell you N(I1) = 1 and N(I2) = N(I3) = 2. Using this we compute

5Th ring Z[
√
−23] is the order of discriminant −23 · 4, and would be the right thing to work with for

forms like x2 + 23y2. Incidentally, h(−92) = 6.
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that QIi = Qi for i = 1, 2, 3, for appropriate choice of bases. E.g., for I1, take α = 1 and

β = −1+
√
−23

2 . Then

QI1 = N(x+
1 +
√
−23

2
y) = x2 + xy + 6y2 = Q1.

This correspondence defines an isomorphism Cl(OK) ' Cl(−∆) (or we can take this as the
definition of composition of quadratic forms). The correspondence the other way is easier
to describe: we can map quadratic forms to ideals by

Q : ax2 + bxy + cy2 7→ IQ = (a,
b−
√

∆

2
).

At the level of equivalence classes, this correspondence is the inverse to the map I 7→ QI
above.

Our main motivating question is: when does some Qi represent a prime p? Here the
local-global principle that we used when ∆ = −4 need to be modified. We can’t determine
whether a single Qi represent p by knowing if it does mod |∆|, but we can determine whether
at least one of Q1, Q2, Q3 represent p by considerations mod |∆|. In fact, one can prove a
precise formula!

Let rQi(n) denote the number of representations of n by Qi, i.e., the number of solutions
in Z × Z to Qi(x, y) = n. For simplicity, I will just state the following result in the case
n = p odd.

Theorem 1.8 (Dirichlet’s mass formula). For ∆ = −23 and p odd, we have

r∆(p) := rQ1(p) + rQ2(p) + rQ3(p) = 2

(
1 +

(
∆

p

))
.

Here
(
a
p

)
is the Legendre symbol, which is 0 if p divides a; otherwise it is ±1 according to

whether a is a square mod p or not. To compute this explicitly, we use quadratic reciprocity
(also proved by Gauss, and widely considered the crown jewel of elementary number theory),
which says

(p
q

)
= (−1)(p−1)(q−1)/4

(q
p

)
for p, q odd primes. In this case, it gives(

∆

p

)
=

(
−1

p

)(
23

p

)
= (−1)

p−1
2

(
−1

p

)(
p

23

)
=

(
p

23

)
.

(The last equality comes from the first supplementary law of quadratic reciprocity, which
says

(−1
p

)
= 1 if and only if p ≡ 1 mod 4.) Thus an odd prime p is represented by some

form in Cl(∆) if and only if p is a square mod 23. Explicitly, the squares mod 23 are
{0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. See Table 1 for values of rQi(p) for p < 150 a square mod
23.

There are a couple of things we can observe from Table 1. If p is a square mod 23, either
Q1 represents p or both Q2 and Q3 do, but not all of Q1, Q2 and Q3 do. One can prove
this using the above theorem (since r∆(p) ≤ 4) together with a linear transformation (in
GL2(Z) but not SL2(Z)) relating Q2 and Q3. This is not true for general n—already n = 4 is
represented by each Qi. However, the residue class of p mod 23 does not determine whether
Q1 or Q2 and Q3 represent p: 59 ≡ 13 mod 23 and Q1 represents 59, whereas Q2 and

7



Table 1: Number of representations of small n by reduced forms of discriminant ∆ = −23
p p mod 23 rQ1(p) rQ2(p) rQ3(p) r∆(p)

2 2 0 2 2 4
3 3 0 2 2 4

13 13 0 2 2 4
23 0 2 0 0 2
29 6 0 2 2 4
31 8 0 2 2 4
41 18 0 2 2 4
47 1 0 2 2 4
59 13 4 0 0 4
71 2 0 2 2 4
73 4 0 2 2 4

101 9 4 0 0 4
127 12 0 2 2 4
131 16 0 2 2 4
139 1 0 2 2 4

Q3 represent 13. So the local-global principle cannot be applied at the level of individual
forms—each Qi represents 13 in Z/23Z (in fact, the forms are equivalent in Z/23Z), but
not every prime p ≡ 13 mod 23 in Z.

We remark that in general the local-global principle will apply at the level of an indi-
vidual form if Cl(∆) has only one element, i.e., if the class number h(∆) = 1. So if ∆ is the
discriminant of some ring of integers (or order) OK , then OK having unique factorization
(like ∆ = −4 and OK = Z[i] in our sum of two squares example) implies there is only one
proper equivalence class of forms Q ∈ Cl(∆) and the local-global principle will apply to the
individual form Q.

In fact, one can refine this so that the local-global principle applies to certain nice
subsets of Cl(∆). Each form class group can be partitioned into genera (plural of genus),
and the local-global principle applies for each genus. Two forms being in the same genus
means they are equivalent mod m for each m, and it suffices to check this for m = |∆|.
In the case of ∆ = −23, there is only one genus, so we cannot separate Q1, Q2 and Q3,
but in the case of ∆ = −20, there are two classes of forms which are in separate genera, so
one can apply the local-global principle for each form.6 (This is why I think ∆ = −23 is
more interesting.) In general, we can determine the primes represented by a given form of
discriminant ∆ just by looking at congruences mod |∆| if each genus in Cl(∆) has size one.
The phrase we usually use for this is “one class per genus.” There is one class per genus if
and only if Cl(∆) has no elements of order > 2, i.e., Cl(∆) ' (Z/2Z)m for some m.

6To go back to our earlier examples: for ∆ = −8, p = x2 + 2y2 if and only if p = 2 or p ≡ 1, 3, mod 8; for
∆ = −3, we have p = x2 − xy + y2 if and only if p = 3 or p ≡ 1 mod 3; for ∆ = −20, we have p = x2 + 5y2

if and only if p = 5 or p ≡ 1, 9 mod 20 and p = 2x2 + 2xy + 3y2 if and only if p = 2 or p ≡ 3, 7 mod 20.
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Table 2: Class numbers for negative discriminants
∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆)

−3 1 −52 2 −103 5 −152 6 −203 4 −252 10
−4 1 −55 4 −104 6 −155 4 −204 8 −255 12
−7 1 −56 4 −107 3 −156 8 −207 9 −256 8
−8 1 −59 3 −108 6 −159 10 −208 6 −259 4
−11 1 −60 4 −111 8 −160 6 −211 3 −260 8
−12 2 −63 5 −112 4 −163 1 −212 6 −263 13
−15 2 −64 4 −115 2 −164 8 −215 14 −264 8
−16 2 −67 1 −116 6 −167 11 −216 8 −267 2
−19 1 −68 4 −119 10 −168 4 −219 4 −268 4
−20 2 −71 7 −120 4 −171 5 −220 8 −271 11
−23 3 −72 3 −123 2 −172 4 −223 7 −272 12
−24 2 −75 3 −124 6 −175 7 −224 12 −275 5
−27 2 −76 4 −127 5 −176 10 −227 5 −276 8
−28 2 −79 5 −128 7 −179 5 −228 4 −279 15
−31 3 −80 6 −131 5 −180 6 −231 12 −280 4
−32 3 −83 3 −132 4 −183 8 −232 2 −283 3
−35 2 −84 4 −135 8 −184 4 −235 2 −284 14
−36 3 −87 6 −136 4 −187 2 −236 12 −287 14
−39 4 −88 2 −139 3 −188 10 −239 15 −288 9
−40 2 −91 2 −140 8 −191 13 −240 8 −291 4
−43 1 −92 6 −143 10 −192 8 −243 5 −292 4
−44 4 −95 8 −144 8 −195 4 −244 6 −295 8
−47 5 −96 6 −147 3 −196 5 −247 6 −296 10
−48 4 −99 3 −148 2 −199 9 −248 8 −299 8
−51 2 −100 3 −151 7 −200 7 −251 7 −300 10
−52 2 −103 5 −152 6 −203 4 −252 10 −303 10

1.3 Class numbers

A natural question to ask is: what is the behaviour of the class numbers h(∆), where ∆ < 0
is a discriminant (meaning the discriminant of some binary quadratic form)? For instance,
when is h(∆) = 1? In this case, there is only one positive definite form Q (up to proper
equivalence) with discriminant ∆, so one has a composition law Q2 = Q, and one can
determine all n represented by Q by reducing to the n = p case and using the local-global
principle or Dirichlet’s mass formula. Here one can get a completely elementary answer just
as in the case of sums of two squares (see Footnote 6 for a couple of examples).

However, class numbers behave mysteriously, almost randomly, like prime numbers.
Gauss, being a master of calculation, computed a large amount of class numbers, and based
on this conjectured that h(∆) → ∞ as ∆ → −∞. See Table 2 for some calculations. In
particular, there are only a finite number of ∆ with given class number h. This was proved
by Heilbronn in 1934. However, the proof is not effective, meaning one cannot actually
determine all ∆ with a given class number.
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Gauss further conjectured that there are exactly 13 negative discriminants of class num-
ber 1 (9 of which are fundamental, meaning the discriminant of some imaginary quadratic
number field), the largest one (in absolute value) being −163.7 (See Table 2 to determine
Gauss’ list.) This was essentially proved by Heegner (an “amateur” mathematician) in 1952
using modular forms, but his work wasn’t understood or accepted until 1967 when Stark
understood it and corrected a minor gap. In the meantime, it was settled (with an accepted
proof) by Baker in 1966 using completely different methods.

The general problem of determining all ∆ < 0 with a given class number h was observed
to be related to L-functions of elliptic curves by Goldfeld, and is currently solved for (at
least) h < 100 by Watkins. We’ll discuss elliptic curves and their L-functions in another
context in Section 3.2.

Despite the class numbers behaving in essentially a random way, Dirichlet discovered
a formula for the class numbers. One can reduce to the case of fundamental discriminant
∆ < 0, so we will assume that now. One defines what is now called a Dirichlet character

χ∆ : N→ {1, 0,−1} χ∆(n) =

(
∆

n

)
,

where
(
a
b

)
is a suitable, multiplicative extension of the Legendre symbol to arbitrary b ∈ N.

Then χ∆ is multiplicative. For a character χ : N→ {1, 0,−1}, one defines the L-series

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

These kinds of series, i.e. those of the form
∑ an

ns for some sequence (an), are now called
Dirichlet series. The above series converges if Re(s) > 1.

Furthermore, χ being multiplicative means there is an Euler product

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

which again is valid for Re(s) > 1.
Let me sketch how one gets the Euler product. Consider the first two terms (p = 2, 3)

of the Euler product above(
1

1− χ(2)
2s

)(
1

1− χ(3)
3s

)
=

(
1 +

χ(2)

2s
+
χ(2)2

22s
+ · · ·

)(
1 +

χ(3)

3s
+
χ(3)2

32s
+ · · ·

)
= 1 +

χ(2)

2s
+
χ(3)

3s
+
χ(4)

4s
+
χ(6)

6s
+
χ(8)

8s
+
χ(9)

9s
+ · · ·

Here the first equality comes from the geometric series expansion, and the second comes
from multiplying out terms and using the fact that χ(mn) = χ(m)χ(n). The expansion
can be justified for Re(s) large by showing both expressions converge. Note that the right

7In terms of quadratic fields, class number one means the ring of integers has unique factorization: e.g.,
h(−4) = 1 means the ring of integers Z[i] in Q(

√
−4) = Q(i) has unique factorization, where as h(−20) = 2

means the ring of integers Z[
√
−5] in Q(

√
−20) = Q(

√
−5) does not.
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hand side will be the sum of the terms χ(n)
ns over precisely the n of the form 2e3f for some

e, f . Inductively adding more primes in this product (and checking convergence) gives the
equality

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

(1− χ(p)p−s)−1.

When χ ≡ 1 is the trivial character, this is precisely the Riemann zeta function ζ(s) =
L(s, 1). For the zeta function, we get a pole at s = 1. This is seen from the series expansion:
ζ(1) is the harmonic series. Note that any factor in the Euler product is a finite number
when s = 1, so ζ(1) =∞ implies there must be infinitely many primes, and this is Euler’s
proof of the infinitude of primes. (This may seem like overkill, but besides being very cool,
the idea is important: one can use the Riemann zeta function to estimate the number of
primes < x, which is far from obvious using only elementary methods.)

On the other hand, for a fundamental discriminant ∆, L(s, χ∆) can be extended to an
entire function on C—i.e., the Dirichlet L-functions L(s, χ∆) have no poles. In particular,
the series expansion converges (conditionally) at s = 1, and Dirichlet showed the value at
s = 1 is related to the class number. We only state Dirichlet’s class number formula for
∆ < −4 for simplicity.

Theorem 1.9 (Dirichlet). Suppose ∆ < −4. Then

h(∆) =

√
|∆|
π

L(1, χ∆).

Furthermore, one can prove a formula for L(1, χ∆) in terms of the values of χ∆. This
gives a more computationally explicit form of Dirichlet’s class number formula (again just
stated for ∆ < −4):

h(∆) =
1

2− χ∆(2)

∣∣∣ ∑
1≤k< |∆|

2

χ∆(k)
∣∣∣.

While it is nice to have this explicit formula, this formula was not directly useful in
answering Gauss’ class number questions, as χ∆ will oscillate between positive and negative,
so it is hard to determine the size of the right hand side (and as you see from class number
tables, it fluctuates quite a bit).

We remark that one can do something similar for ∆ > 0, where Cl(∆) will be a class
group of indefinite binary quadratic forms which correspond to ideal class groups for real
quadratic fields (at least for the fundamental ∆ > 0). In contrast to the negative discrimi-
nant case, much less is known about the positive discriminant case. A table of class numbers
for positive fundamental discriminants is given in Table 3.

As you can see, class numbers tend to be a lot smaller for positive discriminants. Gauss
conjectured that, in contrast to the negative discriminant case, class number 1 occurs for
infinitely many positive discriminants. Again, there is a Dirichlet class number formula
in this case, but it is complicated by occcurences of log and sin. However, knowing some
things about elliptic curve L-functions could tell us that we get class number 1 infinitely
often for positive discriminants.

11



Table 3: Class numbers for positive fundamental discriminants
∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆) ∆ h(∆)

5 1 57 1 105 2 161 1 213 1 268 1
8 1 60 2 109 1 165 2 217 1 269 1

12 1 61 1 113 1 168 2 220 2 273 2
13 1 65 2 120 2 172 1 221 2 277 1
17 1 69 1 124 1 173 1 229 3 280 2
21 1 73 1 129 1 177 1 232 2 281 1
24 1 76 1 133 1 181 1 233 1 284 1
28 1 77 1 136 2 184 1 236 1 285 2
29 1 85 2 137 1 185 2 237 1 293 1
33 1 88 1 140 2 188 1 241 1 296 2
37 1 89 1 141 1 193 1 248 1 301 1
40 2 92 1 145 4 197 1 249 1 305 2
41 1 93 1 149 1 201 1 253 1 309 1
44 1 97 1 152 1 204 2 257 3 312 2
53 1 101 1 156 2 205 2 264 2 313 1
56 1 104 2 157 1 209 1 265 2 316 3

2 Higher dimensional quadratic forms

Now we move on to the problem: what numbers are sums of k squares, i.e., when does

Qk(x1, . . . , xk) = x2
1 + · · ·+ x2

k = n x1, . . . , xk ∈ Z

have a solution. This form is called a k-ary quadratic form (i.e, there are k variables and
each monomial has degree 2), and again one can consider arbitrary k-ary forms, but we will
just focus on the forms Qk above.

When k = 2, we get binary forms. Simlarly, we call the forms for k = 3 and k = 4
ternary and quaternary quadratic forms.

We remark that a k-ary quadratic form Q can be viewed a function Q : Rn → R (or
from Qn → Q, or Cn → C). Then B(u, v) = (Q(u+v)−Q(u)−Q(v))/2 defines a symmetric
bilinear form on Rn such that B(v, v) = Q(v) and makes Rn into what is called a quadratic
space. In linear algebra, one often looks at the orthogonal group O(Q) of this space, i.e.,
O(Q) is the group of invertible linear operators on Rn which preserve Q. For Q = Qk, one
gets the usual orthogonal group O(k), which is the isometry group of the k-dimensional
sphere {v ∈ Rn : Qk(v) = 1}. Much of the algebraic theory of quadratic forms is devoted
to a study of these quadratic spaces and their orthogonal groups. While this theory is
important also in the arithmetic of quadratic forms, we will not focus on it here.

Primary references for this section are [Gro85] and my modular forms notes [Mar], which
almost list additional references. (In fact, Section 2.2 is largely taken from my introduction
in [Mar].)
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2.1 Ternary and quaternary quadratic forms

Now you might think the next easiest case after sums of two squares is sums of three squares,
but actually it’s sums of four squares.

Theorem 2.1 (Lagrange (1770)). Every integer is the sum of four squares.

There are many ways to prove this. One approach is to use quaternions. The connection
with quaternions hints at a higher-dimensional generalization of the connection between
binary quadratic forms and ideals in quadratic fields.

Let
H = R[i, j, k] = {a+ bi+ cj + dk|a, b, c, d ∈ R},

where
i2 = j2 = k2 = ijk = −1.

This is a non-commutative division algebra,8 known as Hamilton’s quaternions. It is some
sort of generalization of the complex numbers. Just as C is 2-dimensional over R, this is 2-
dimensional over C, or 4-dimensional over R (as a vector space). H has many applications,
and is closely related to the algebra of 2 × 2 real matrices. Note that going from R to
C, one loses the natural well-ordering one had on R, and going from C to H one loses
commutativity. Incidentally, one can extend the quaternions to the octonions O, but then
one loses associativity. The octonions also have numerous applications, and can be used to
study sums of 8 squares.

The norm on H is given by

N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2.

The integers of (the rational subfield of) H, called the Hurwitz integers are

OH = Z
[
i, j, k,

1 + i+ j + k

2

]
=

{
a+ bi+ cj + dk

2

∣∣∣a, b, c, d ∈ Z, a ≡ b ≡ c ≡ d mod 2

}
.

Then
N : OH → Z.

One can check that n is a sum of four squares if and only if n = N(α) for some α ∈ OH,
which means that n factors in OH. The fact that N is multiplicative means we have a
composition law for Q4, i.e., the product of sums of four squares is again a sum of four
squares. Thus we can reduce Lagrange’s four square theorem to showing every prime is a
sum of four squares.

Suppose p is not a sum of four squares, so it does not factor in OH, i.e., it is irreducible
in OH. A lemma of Lagrange says that p divides 1 + a2 + b2 = (1 + ai+ bj)(1− ai− bj) for
some a, b ∈ Z. It is a fact that OH possesses unique factorization (suitably defined), which is
equivalent to saying every ideal in OH is principal, i.e., it has class number 1. Hence p being
irreducible in OH means p must divide 1 + ai+ bj or 1− ai− bj in OH, but 1±ai±bj

p 6∈ OH,
a contradiction. This gives Lagrange’s theorem.

8An algebra is a vector space (over some field) that is simultaneously a ring. E.g., any field is an algebra.
So are matrix algebras, such as Matn×n(R).
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I’ll give you a formula for the number of representations of n as a sum of four squares
in the next section.

In general, you might wonder about composition laws for general quaternary quadratic
forms. For binary forms, the correspondence was with quadratic number fields K. An
analogous correspondence for k = 4 should associate certain 4-dimensional algebras like
H to quaternary forms.. The right algebras to look at are those known as quaternion
algebras B/Q, and there are infinitely many. The analogue of the ring of integers (or more
generally, an order) in K is the notion of an order O in B, such as OH. However B being
noncommutative means that one cannot always multiply ideals in O (the ideal classes still
make sense, and they are finite in number, but they do not form a group). Nevertheless,
for suitably compatible ideals I and J , the product IJ does make sense. By associating
quaternary quadratic forms to these ideals, one gets a partial composition law on certain
quaternary quadratic forms. Note that one does not get all quaternary quadratic forms this
way, only those of “quaternionic type.” See [KOK+86] for more on these partial composition
laws.

For three squares, we have the following theorem.

Theorem 2.2 (Legendre (1798?)). A natural number n is the sum of three squares if and
only if n 6= 4j(8k + 7) for all j, k. In particular, a prime p is the sum of three squares if
and only p 6≡ 7 mod 8.

The prime case of Legendre’s three square theorem can be easily reduced to the problem
for binary quadratic forms. One can check that 7 is not a sum of three squares mod 8, so one
direction is easy, and p = 2 is simple. If p ≡ 1, 5 mod 8, i.e., p ≡ 1 mod 4, then p = x2 + y2

by Fermat’s two square theorem, and thus p is also a sum of three squares (one square
being 0). An analogue of Fermat’s two square theorem is that p = x2 + 2y2 if and only if
p ≡ 1, 2, 3 mod 8. So if p ≡ 3 mod 8, then p = x2 + y2 + z2 with y = z. This yields the
prime case of Legendre’s theorem.

The general case is more difficult essentially because there is no nice composition law
for ternary quadratic forms. However, Gauss still used his theory of binary quadratic forms
to prove a quantitative version of Legendre’s theorem: the number of “primitive solutions”
(meaning gcd(x, y, z) = 1) to x2 + y2 + z2 = n is (for n > 3)

R3(n) =


12h(−4n) n ≡ 1, 2 mod 4

24h(−n) n ≡ 3 mod 8

0 else.

In case you like the idea of using quaternions for four squares (I do), you can also
use them to address 3 squares. Here the way to associate a ternary quadratic form to a
quaternion algebra is to restrict it to the “pure quaternions,” e.g., restricting the norm to

H0 = {xi+ yj + zk : x, y, z ∈ R} ⊂ H

yields the quadratic form x2 +y2 +z2. In some sense the reason that there is no composition
law for x2 + y2 + z2 is because the product of two pure quaternions is not in general a pure
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quaternion.9

Another proof (for 3 or 4 squares) is to use the local-global principle, which applies to
quadratic forms in dimensions higher than 2 as well. See, e.g., my Number Theory II notes
[Marb] or Serre’s classic [Ser73].

2.2 Quadratic forms in arbitrary dimension

Since any natural number is a sum of four squares, we know any natural number is a sum
of k squares for k ≥ 4, and thus Question 1 is solved for every Qk. (See [Gro85] for a
statement, without proof, in the case k = 1.) Now we want to say something about the
Question 2. Denote by rk(n) the number of representations of n by Qk.

Here is a general approach to determine rk(n). Jacobi considered the theta function

ϑ(z) =
∞∑

n=−∞
qn

2
, q = e2πiz. (4)

This function is well defined for z ∈ H = {x + iy : x, y ∈ R, y > 0}. We call H the upper
half plane. Then

ϑ2(z) =

( ∞∑
`=−∞

q`
2

)( ∞∑
m=−∞

qm
2

)
=
∑
`,m

q`
2+m2

=
∑
n≥0

r2(n)qn.

Similarly,

ϑk(z) =
∑
n≥0

rk(n)qn. (5)

It is not too difficult to see that ϑk satisfies the identities

ϑk(z + 1) = ϑk(z), ϑk
(
−1

4z

)
=

(
2z

i

) k
2

ϑk(z). (6)

Indeed, the first identity is obvious because q is invariant under z 7→ z + 1.
The space of (holomorphic) functions on H satisfying the transformation properties is

(6) is defined to be the space of modular forms Mk/2(4) of weight k/2 and level 4. The
theory of modular forms will tell us that Mk/2(4) is a finite-dimensional vector space.

Let me outline the details in essentially the simplest case, k = 4 (Lagrange’s case). Here
M2(4) is a 2-dimensional vector space, and one can find a basis in terms of Eisenstein series.
Specifically, consider the Eisenstein series

G(z) = − 1

24
+
∞∑
n=1

σ(n)qn, (7)

where σ(n) is the divisor function σ(n) =
∑

d|n d. Then a basis of M2(4) is

f(z) = G(z)− 2G(2z), g(z) = G(2z)− 2G(4z).

9There is a composition law for x2
1 + · · ·+x2

k if and only if k = 1, 2, 4, 8. This has to do with the existence
of suitable algebras of real dimension k, which only occur for these values of k, namely R, C, H and the
octonions O.
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Hence ϑ4(z) is a linear combination of f(z) and g(z). How do we determine what combina-
tion? Simply compare the first two coefficients of qn in af(z) + bg(z) with ϑ4(z), and one
sees that

ϑ4(z) = 8f(z) + 16g(z).

Expanding this out, one sees that

ϑ4(z) =
∑
n≥0

r4(n)qn = 1 + 8
∑
n≥1

σ(n)qn − 32
∑
n≥1

σ(n)q4n. (8)

Consequently

r4(n) =

{
8σ(n) 4 - n
8σ(n)− 32σ(n/4) 4|n.

If one wishes, one can write this as a single formula

r4(n) = 8 (2 + (−1)n)
∑
d|n,2-d

d.

In particular, it is obvious that r4(n) > 0 for all n, in other words, we have Lagrange’s
theorem that every positive integer is a sum of four squares. Furthermore, we have a simple
formula for the number of representations of n as a sum of four squares, in terms of the
divisors of n.

This approach adapts to larger k as well (the k even case being easier), however Mk/2(4)
is no longer generated by linear combinations of the Eisenstein series G(Nz) for various
N , but rather generated (linearly) by Eisenstein series and cusp forms. The formula for
r4(n) came out quite simple because the Fourier coefficients of the Eisenstein series (i.e., the
coefficients of qn in (7)) have a simple expression. On the other hand the Fourier coefficients
of the cusp forms are more complicated and mysterious, but are asymptotically smaller than
the Fourier coefficients of Eisenstein series. In general ϑk will be a linear combination of
Eisenstein series and cusp forms (though for k = 8 one also only needs Eisenstein series),10

so one can get a simple asymptotic formula for rk(n), but not a simple exact formula.
Nevertheless, for specific values of k, one can work out more complicated exact formulas
for rk(n) by, say, writing cusp forms as polynomial combinations of Eisenstein series. These
expressions involve polynomial combinations of the higher power divisor functions σm(n) =∑

d|n d
m.11

3 Binary cubic forms

Now that we have some ideas about representability questions for quadratic forms, let’s
explore a little in higher degree. A binary cubic form is a polynomial of the form

F (x, y) = ax3 + bx2y + cxy2 + dy3,

10One can also get an elementary formula for r8(n) using octonions. However, for general values of k there
is no nice algebra to associate with the form Qk.

11For special values of k, other formula may exist. For instance, for k = 4m2 or 4m2 + 4m, Milne [Mil96]
discovered interesting combinatorial expressions for rk(n) using connections with Lie algebras.
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where we will take a, b, c, d ∈ Z. Here I will just focus on the form x3 + y3, first over Z,
then over Q, but I hope to add a section on composition laws for binary cubic forms later.
(These composition laws are of a different nature than Gauss’s.)

I drew the material here from a smattering of sources, such as the elementary article
[Sil93], the research articles [RVZ95] and [DV09] and various (basic and advanced) facts
about elliptic curves, though many of the results are also summarized in [Coh07, Section
6.4.6]. If I convince you to learn more about elliptic curves, there are many good sources.
For instance, [ST15] is a particularly nice elementary introduction and [Sil09] is the gold
standard for a more serious study.12

3.1 Sums of two integer cubes

A natural generalization of the sum of two squares question is: what numbers n are sums
of two (or three, or four) cubes, i.e., when is n = x3 + y3 for x, y ∈ Z?13 Note this question
makes sense for n ∈ Z, but the answer for n is the same as the answer for −n, so we
may assume n > 0. Recall that for the two squares problem, we used the factorization
x2 + y2 = (x+ y)(x− y). In the case at hand, we have the factorization14

x3 + y3 = (x+ y)(x2 − xy + y2) = n. (9)

Thus, if this is solvable, we have a factorization of n = rs with r = x+y and s = x2−xy+y2.
Writing y = r − x and substituting yields the quadratic equation s = 3x2 − 3rx + r2, so
there are at most two solutions for any (positive or negative) divisor s of n, and we can
algorithmically check whether a given n is a sum of two cubes. (Note here x and y are
allowed to be positive and negative integers, so one can’t just check x, y up to 3

√
n.)

While we don’t have a composition law that will allow us to reduce the question for
composite n to the question for n prime,15 let’s just focus on the case n = p is prime
for simplicity. Here there is esssentially one factorization of n giving the four possibilities
r = ±1 and r = ±p. If r = ±1 so s = ±p, then the question is just what primes p satisfy
±p = 3x2 ∓ 3x + 1. Since the polynomial on the right is is always positive, we can only
have s = +p, and we get the primes of the form

p = 3x2 − 3x+ 1, x ∈ Z (10)

Note that f(x) = 3x2 − 3x + 1 = 3x(x − 1) + 1 satisfies f(−x) = f(x + 1), so the set of
values of f at positive integers are the same as the set of values of f at negative integers,

12There don’t seem to be too many introductory sources that treat sums of two cubes. Personally I think
it is a great problem for motivating the study of elliptic curves, or at least to give as an application, but
it seems to have gotten lost behind things like applications of elliptic curves to Fermat’s last theorem, the
congruent number problem (what numbers occur as areas of right triangles with rational length sides), and
cryptography.

13If you’re curious about an analogue of Lagrange’s four squares theorem, for cubes it known that every
integer is a sum of five integer cubes, and it is conjectured that four suffice (cf. [Coh07, Section 6.4.6]). If
you want to restruct to positive numbers, it is known that every natural number is a sum at most 9 cubes
of natural numbers. The analogous question for general k-th powers is called Waring’s problem.

14One can further factor into linear factors over Q(
√
−3) as x3 + y3 = (x+ y)(x− 1+

√
−3

2
y)(x− 1−

√
−3

2
y),

however this is not necessary for our current discussion.
15For instance, 1729 = 7 · 13 · 19 is famously the sum of two cubes (see Footnote 18), but of these three

prime factors, only 7 is itself a sum of two cubes, as we will see momentarily.
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meaning we can just check this for x ∈ N. In fact we can replace (10) with the condition
that p = f(x + 1) = 3x2 + 3x + 1 for some x ∈ N. (My tiny brain finds polynomials with
positive coefficients easier to understand, so excuse this indulgence.) Clearly any number of
the form 3x2 +3x+1 must be 1 mod 3—one can further check it satisfies the finer condition
≡ 1, 7 mod 9.16

On the other hand, if r = ±p, then we need ±1 = 3x2 ∓ 3px+ p2. Again, if we assume
p > 0, then a solution with r = −p is clearly impossible, so we would need 3x2−3px+p2 = 1.

The polynomial f(x) = 3x2− 3px+ p2 has minimum f(p2) = p2

4 , so we only get the solution
x = 1, p = 2. This shows

Proposition 3.1. A prime p is a sum of two integer cubes if and only if p = 2 or p =
3x2 + 3x + 1 (or equivalently p = 3x2 − 3x + 1) for some x ∈ Z (or equivalently for some
x ∈ N). A necessary condition for p > 2 is p ≡ 1, 7 mod 9.

Note the proof also shows that every (not necessarily prime) value of 3x2 + 3x+ 1 is a
sum of two integer cubes, though not that every sum of two cubes is represented by this
polynomial. We also get from the factorization that no prime p > 2 is a sum of two positive
cubes, because we need y = 1− x.

Determining what primes are attained by quadratic polynomials at the integers is a hard
problem in number theory. For instance, it is not even known if any quadratic polynomials
take on prime values infinitely often, though Hardy and Littlewood have conjectures about
how often you should get prime values (in particular, infinitely often if you avoid obvious
counterexamples like f(x) = x2 or f(x) = 5x2 + 10). It turns out the first four values of
3x2 + 3x+ 1 are prime: 7, 19, 37, 61, but the next, 91, is not. (This is another reason why
I prefer 3x2 + 3x+ 1 to 3x2− 3x+ 1.) Note 43 is the first example of a prime ≡ 1, 7 mod 9
which is not represented as a sum of two cubes. See Table 4 for which small primes are
sums of two cubes.

From what we’ve done, we can conclude that most primes p ≡ 1, 7 mod 9 cannot be
sums of two cubes. Namely, the Prime Number Theorem17 says that number of primes less
than x is asymptotic to x

log x . Then Dirichlet’s density theorem tells us that, asymtotically,
the primes fall along the classes 1, 2, 4, 5, 7, 8 mod 9 equally often. Hence, for instance, the
number of primes ≡ 1 mod 9 less than x is asymptotic to x

6 log x . On the other hand the

number of integers represented by the quadratic polynomial 3t2 + 3t + 1 less than x is
bounded by

√
x
3 . Therefore the proportion of primes ≡ 1 mod 9 (or ≡ 7 mod 9) which are

sums of two cubes must be asymptotically 0.
Having said all this, in some sense the above proposition is an analogue of our answer

to the sum of two squares question (and easier to prove!). We can restate the two squares
case as: p is a sum of two squares if and only if p = 2 or p = 4x + 1 for some x. This
expresses what primes are represented by a binary quadratic form in terms of what primes
are represented by a univariate linear polynomial. Proposition 3.1 relates what primes are

16Going back to the factorization of x3 + y3, we conclude any prime which is the sum of two cubes
is represented by the positive definite binary quadratic form x2 − xy + y2 from Example 1.5. Since this
discriminant ∆ = −3 has class number 1, we can apply the local-global principle to see that p = x2−xy+y2

if and only if p = 3 or p ≡ 1 mod 3. The additional condition x + y = 1 precludes most of these p from
being sums of two cubes, in particular p = 3 or any p ≡ 4 mod 7.

17This is one of the results we indicated earlier that can be proved using the Riemann zeta function.
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Table 4: Small primes ≡ 1, 7 mod 9: bold entries are sums of 2 integer cubes
1 mod 9 7 mod 9 1 mod 9 7 mod 9 1 mod 9 7 mod 9

19 7 523 439 1063 1069
37 43 541 457 1117 1087
73 61 577 547 1153 1123

109 79 613 601 1171 1213
127 97 631 619 1279 1231
163 151 739 673 1297 1249
181 223 757 691 1423 1303
199 241 811 709 1459 1321
271 277 829 727 1531 1429
307 313 883 853 1549 1447
379 331 919 907 1567 1483
397 349 937 997 1621 1609
433 367 991 1033 1657 1627
487 421 1009 1051 1693 1663
523 439 1063 1069 1747 1699

represented by a binary cubic form in terms of what primes are represented by a univariate
quadratic polynomial.

3.2 Sums of two rational cubes

Now we move on to a related question.18

Question 3. What integers are sums of two rational cubes?19 That is, for what n does

x3 + y3 = n, x, y ∈ Q (11)

have a solution?

The answer may also give us more information about what numbers are sums of two
integral cubes, as anything that’s not a sum of two rational cubes can’t be a sum of two
integral cubes. Further, a rational solution x = a

b , y = c
d to (11) means we have an integer

solution (x, y) = (a, c) to the curve x3 + y3 = n(bd)3. Consequently, knowing everything
about integer solutions to x3 + y3 = n for all n is equivalent to knowing everything about
rational solutions to the same equation for all n.

On the other hand, given some n, it is not as easy to algorithmically determine whether
(11) has a rational solution. We of course still have the factorization x3 + y3 = (x +

18The nice, elementary article [Sil93] looks at a different related question—how many integer solutions
can n = x3 + y3 have? (By earlier considerations, it is at most four times the number of divisors of n.)
This is related to what are called taxicab numbers, in light of Ramanujan’s remark to Hardy on riding on a
taxi numbered 1729 that 1729 is very interesting because it is the smallest number which is the sum of two
(integer) cubes in two different ways: 1729 = 13 + 123 = 93 + 103. It turns out that given some r, there are
infinitely many n which are expressible as the sum of two cubes in at least r different ways.

19All rationals are sums of three rational cubes. See, e.g., [HW08, Section 13.6] or [Coh07, Section 6.4.6].
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y)(x2 − xy + y2), however, if we are working with rational numbers, there are infinitely
many possibilities for a factorization into two rationals. Hence our previous approach for
determining what numbers are sums of two integer cubes does not give us a finite number
of possibilities. So, computationally this is a harder problem.

The benefit, though, of asking the question about rational cubes is that this allows us
to put some structure on the set of solutions to (11). Let me draw a picture of the curve
defined by (11) over R.

y = −x

x3 + y3 = n

One can put a group structure on the set of points of this curve in R2. There are
different ways to define it. I’ll do it from an elementary geometric perspective (the usual
first definition one sees, though not the most enlightening). To make it slightly easier to
describe, let me rotate the graph so the asymptote is the y-axis rather than the line y = −x.
Denote the rotated curve in R2 by C.

C

P

Q

`

R

P +Q = −R
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Now the (additive) group law on C is defined as follows. For any point P on C, we
define −P to be the reflection of P about x-axis. By the symmetry of C, we see that −P
also lies on C. Hence the map P 7→ −P is an involution of C (right now, just as a set—it’s
a bijective function which is its own inverse).

Given two points P and Q, draw the secant line ` through P and Q. Then, apart from
exceptional cases, since this is a degree 3 curve, ` will intersect C in exactly one other point
R. We define the sum P +Q = −R.

The notation −R indicates that −R should be the additive inverse of R. (I know we
haven’t defined the identity of the group yet, but it will come out of these considerations.)
If we draw the secant line through R and −R, it won’t intersect C in a third point—this
is one of the exceptional cases. So we artificially add a point O to C, called the point at
infinity, and we think of it as being infinitely far up, and also down, along the y axis. I.e,
you can think of the coordinates of O as (x,±∞) for any x. Then reflection about the
x-axis should preserve O, and we take −O = O. Then we see −R + R = −O = O. Hence
O should be the additive identity. Indeed, the “secant line” ` through O and any point P
on C is just the vertical line through P . By symmetry, the other point of intersection of `
and C must be −P , so O + P = −(−P ) = P . We also define O +O = O.

The only remaining cases in which to define addition are when P = Q or the line ` is
tangent to P or Q. In the former case, we take ` to be the tangent line through P , and −R
will be the unique other point on C intersecting ` (this point will be O if P is the point of
intersection of C and the x-axis). In the latter case, the line ` will also not intersect C in
3 distinct points. If, say, ` is tangent to P , then we take −R to be P . These rules make C
(together with O) an abelian group. We call this group an elliptic curve.

A less haphazard way to think about this is in terms of projective geometry. The point
at infinity O wraps up the curve C into a topological loop (as well as any vertical line). We
call the resulting curve the projective curve or projectivization E of C. Bezout’s theorem
from algebraic geometry20 tells us that, over C, E intersects any line in exactly 3 points,
counting multiplicity (suitably defined—e.g., y = xn intersects the x-axis with multiplicity
n, and if a line is tangent to a curve at a point, the multiplicity is at least 2). Using this, we
can define a group law on E by specifying that if P,Q,R are three (counting multiplicity)
collinear points on E, then P +Q+ R = O, i.e., P +Q = −R. Over R or Q, even though
Bezout’s theorem fails, this construction still works. Namely, there are many lines which
intersect the curve E in at most one point, but it is still true that any line which intersects
E in at least 2 points, must intersect E in exactly 3, counting multiplicity.

What’s important for us is that if P and Q are rational points, i.e., have rational x- and
y-coordinates (or are the point at infinity), then the line ` through P and Q has rational (or
infinite) slope. Then P +Q is also rational (or O), and therefore you get a group structure
just considering the rational points. (This does not work for integral points—if P and Q
have integer coordinates, then at most we know P+Q has rational coordinates.) This group
will be called an elliptic curve over Q.

From now on, denote the elliptic curve over Q associated to the equation (11) by En =
En(Q).21 That is En(Q) is the group structure on the set of rational solutions (x, y) to (11)

20This theorem says that two complex projective curves of degree m and n interesect in exactly mn points,
counting multiplicity.

21If you’re familiar with elliptic curves and are used to Weierstrass form, the curve En can, via the change
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together with the point at infinity O.22 Thus we can rephrase Question 3 as: when does
En(Q) have a nontrivial (not O) rational point?

We have the following general theorem about possible group structures of elliptic curves.

Theorem 3.2 (Mordell (1922); Mazur (1977)). Let E be a elliptic curve over Q. Then
E(Q) ' Zr ⊕ E(Q)tors, where E(Q)tors is a finite abelian group of order at most 16.

The number r is called the (algebraic) rank of the elliptic curve, and the subgroup
E(Q)tors is called the torsion subgroup of E(Q). Mordell proved E(Q) is a finitely generated
abelian group and Mazur classified the possible torsion subgroups (Z/mZ for m ≤ 10 or
m = 12 and (Z/2Z)× (Z/2mZ) for m ≤ 4). The 15 possible torsion subgroups in Mazur’s
theorem all occur for some (in fact, infinitely many) elliptic curves over Q, but not for our
special elliptic curves En:

Proposition 3.3 (cf. [DV09]). If n is not a cube or twice a cube, then En(Q)tors = {O}.
For such n, (11) has a rational solution if and only if the rank of En(Q) is at least one,
i.e., if and only if there are infinitely many rational solutions.

Contrast this to the case of integral points, where there are at most finitely many integer
solutions to x3 + y3 = n. From now on, we will assume that n is neither a cube nor twice
a cube. (In these cases, n is trivially a sum of two (integer) cubes.)

We remark that if we have one rational solution to (11), i.e., a rational point P (6= O)
on En(Q) we can explicitly construct infinitely many solutions by taking multiples mP of
P , i.e., 2P = P +P , 3P = P +P +P , . . . . Here the multiples mP must all be distinct since
the torsion subgroup is trivial. The benefit of this proposition is that it may hard to detect
if you have only a finite number of solutions, but if you have infinitely many solutions, it’s
probably easier to see them. Thus we can translate Question 3 into a special case of the
general question:

Question 4. Given an elliptic curve E over Q, how can you determine if E(Q) is finite or
infinite?

If you believe in miracles, you might hope for a local-global principle. What would this
mean? Well, we can reduce the equation for En mod p and count solutions. Of course there
won’t be infinitely many solutions mod p, but maybe if there are a lot of solutions for many
p, then there should be infinitely many points over Q.

Assume p - 6n. Then taking En mod p gives an elliptic curve mod p, i.e., an elliptic
curver over the finite field Fp. (Part of the general definition of elliptic curves is that they
should be nonsingular, so if p|n, then En mod p is given by the equation x3 + y3 = 0, which
has a singularity at the origin.)

Theorem 3.4 (Hasse). For p - 6n and E = En,

p+ 1− 2
√
p < #E(Fp) < p+ 1 + 2

√
p,

of variables (x, y) 7→ ( 16n
x+y

, 36nx−y
x+y

), be put in the Weierstrass form y2 = x3 − 432n2 (e.g., [HW08, Section
25.3]).

22Note rational points on En don’t correspond to rational points on C—however, the points with coordi-
nates in Q(

√
2) do correspond.
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i.e., the quantity ap = p+ 1−#E(Fp) satisfies

|ap| < 2
√
p.

It turns out that quantities ap determine much of the arithmetic of elliptic curves. One
of the brilliant insights of analytic number theory (based off work of people like Euler and
Dirichlet) is that given some interesting arithmetic sequence (an) associated to some object
X, one can often read deep arithmetic information about X off of the analytic properties
of the Dirichlet series L(s) =

∑ an
ns . Here we only have defined an for (most) n prime, but

we can use the idea of an Euler product to define an nice Dirichlet series associated to E.
Somewhat more precisely, one defines the L-function (or L-series) associated to an

elliptic curve E by

L(s, E) =
∑
n

an
ns

=
∏
p

′ 1

1− app−s + p1−2s
, Re(s) >

3

2
. (12)

Here, for E = En the product on the right is over the factors written for p - 6n and certain
simpler factors for p|n. Then one can expand the product into a series of the form

∑ bn
ns

where bp = ap and one defines the remaining an’s by this identity of the series and the
infinite product. Hasse’s bound on ap implies these expressions converge for Re(s) > 3

2 .
The factors 1− app−s + p1−2s appearing in the denominators on the right might appear

unnatural on first sight, but they arise as traces of certain operators on elliptic curves. That
this is the right choice for the factor also comes out of the analogy with modular forms,
where the L-function of a modular form f(z) =

∑
anq

n is L(s, f) =
∑ an

ns and has an Euler
product of the same form as the one for elliptic curves.

In our case of E = En, the L-function L(s, En) is essentially a product of two L-functions
of Dirichlet characters, and from this one gets the following analytic properties.

Theorem 3.5. The function L(s, E) extends to an entire function on C and satisfies a
functional equation

L(2− s, E) = γ(s, E)L(s, E), (13)

where γ(s, E) is an entire function that is never zero.

For E = En, this follows from relating it to the L-function of a Dirichlet character as
in, say, [IR90, Chapter 18]. (For the connection with [IR90], one first needs to transform
En into Weierstrass form as in Footnote 21.

For general elliptic curves E, the L-function cannot be expressed in terms of L-functions
of Dirichlet characters. (The elliptic curves for which one can do this are the CM elliptic
curves, or the elliptic curves with complex multiplication.) In this case the above analytic
properties are still true, but now require the use of the deep Modularity Theorem (i.e.,
the Shimura–Taniyama–Weil conjecture) which was proved by Wiles (1995), Taylor–Wiles
(1995) and Breuil–Conrad–Diamond–Taylor (2001).

In retrospect, this provides other evidence that these funny factors 1 − app−s + p1−2s

(polynomials in p−s) must be natural things to take in the Euler product (12). First, if
you have an infinite product of functions, you have almost no chance of getting something
that is entire (first of all, continues, and then has no poles—even the Riemann zeta has
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a pole). Second, L-functions match up with either L-functions of Dirichlet characters, or
L-functions of modular forms, where the an’s in the Dirichlet series are the obvious sequence
of numbers to associate with your character or modular form.

Now the L-function is, in some sense, easy to understand on the right half plane Re(s) >
3
2 by its Dirichlet series or Euler product. Consequently, by the functional equation (13),
it is also easy to understand on the left half plane Re(s) < 1

2 . What happens inside the
critical strip 1

2 < Re(s) < 3
2 is more mysterious (the values are just known to exist and vary

analytically by analytic continuation). Of special interest, is what happens along the center
of the critical strip, the critical line Re(s) = 1, and in particular at the central value s = 1.

This is addressed by the following famous conjecture (one of the 7 Clay Millennium
Problems), based off of numerical calculations:

Conjecture 3.6 (Birch–Swinnerton-Dyer (1965?)). #E(Q) =∞ if and only if L(1, E) = 0.
More generally, the rank of E(Q) equals the order of vanishing of L(s, E) at s = 1.

Consequently, for p > 2, the BSD conjecture says that p should be a sum of two cubes
if and only if L(1, Ep) = 0.

This order of vanishing in the BSD conjecture is called the analytic rank of E, and so
the conjecture can be reformulated as saying the algebraic rank equals the analytic rank.
There is also a more precise version of the conjecture that describes what the actual value
of the first nonvanishing derivative (so the central value L(1, E) in the rank 0 case) in terms
of fundamental arithmetic invariants of E. This more precise version can be viewed as an
analogue of Dirichlet’s class number formula (Theorem 1.9).

We can think of the BSD conjecture as a local-global principle in the following way. The
L-series L(s, E) is defined purely in terms of local data, namely the ap’s (and some finite
amount of other data which is simple, but I will not describe). So the order of vanishing of
L(1, E) is determined just by the ap’s. Recall that for p - 6n and E = En is, ap is just p+ 1
minus the number of ways to write n as a sum of two cubes mod p. The conjecture then
says that whether En has (infinitely many) rational points is determined by the ap’s (and
in principle all of the ap’s are determined by n and suitable finite collections). However,
this is a much more subtle local-global principle than what we saw for binary quadratic
forms. This is because the central point s = 1 is past the range of convergence for the Euler
product/Dirichlet series, so the connection between the ap’s and L(1, E) is rather indirect.23

While there have been a lot of exciting breakthroughs about elliptic curves and number
theory recently, I would venture that we’re still a ways off from solving BSD. Nevertheless,
there is a spectacular partial result:

Theorem 3.7 (Gross–Zagier (1986), Kolyvagin (1988)). Suppose that the analytic rank of
E is at most 1. Then the algebraic rank equals the analytic rank, i.e., BSD holds.

There has also been very recent work such as Bhargava–Skinner–Zhang (2015) proving
statistical results like BSD holds for a large percentage of elliptic curves. Their approach is
to show that a large percentage (at least 66%) of elliptic curves have analytic rank ≤ 1.

23This is entirely analogous to the situation of the Riemann hypothesis (another Clay Millennium problem),
where the problem is to understand the zeroes of ζ(s) inside the critical strip, where ζ is just defined by
meromorphic continuation and the usual sum and product formulas do not make sense.
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By this theorem, if we can prove L(1, En) 6= 0 (analytic rank 0), we know n is not a
sum of two rational cubes,24 Moreover, if we can show L(1, En) = 0 but L′(1, En) 6= 0
(analytic rank 1), we get that n is a sum of two rational cubes (in infinitely many ways).
While it is known that elliptic curves in general can have large rank, conjecturally almost
all (statistically 100%) of elliptic curves should have rank 0 or rank 1, with half having rank
0 and half having rank 1.

There is a simple sufficient criterion for concluding that L(1, E) = 0 (in which case the
analytic rank should be 1 almost all the time, but one doesn’t know this in general, so we
can only say that conjecturally #E(Q) = ∞). This comes from our functional equation
(13). Plugging s = 1 in the functional equation gives

L(1, E) = ε(E)L(1, E), where ε(E) = γ(1, E).

We call ε(E) the root number of E and it can be shown that ε(E) = ±1. Furthermore, the
root number can be determined from local conditions. If ε(E) = +1, the above equality is
just L(1, E) = L(1, E) and we get no information, but if ε(E) = −1, then we L(1, E) =
−L(1, E) implies L(1, E) = 0.

For E = En when n = p, the local root numbers are not hard to determine and we have
the following (cf. [DV09]):

Proposition 3.8. For n = p > 3, we have

ε(Ep) =

{
1 p ≡ 1, 2, 5 mod 9

−1 p ≡ 4, 7, 8 mod 9.

Consequently, when p ≡ 4, 7, 8 mod 9, we have L(1, Ep) = 0 and, if BSD is true, then p is
a sum of two rational cubes.

The statement that any p ≡ 4, 7, 8 mod 9 is a sum of two rational cubes seems to have
originally been conjectured by Sylvester around 1847. (Contrast this with the case of sums
of two integral cubes, where no prime ≡ 4, 8 mod 9 appears and asymptotically 0% of
primes ≡ 7 mod 9 are sums of two integral cubes.) Elkies (1994) announced a proof of this
conjecture in the cases p ≡ 4, 7 mod 9, but this has not been published (cf. [DV09]).

For general elliptic curves, there are no simple criteria to conclude that L(1, E) 6= 0
or not when ε(E) = +1, however things are easier to analyze in the case of CM elliptic
curves such as En. In fact, the following result (excluding the statement about L(1, Ep)) is
classical.

Theorem 3.9 (Pépin, Lucas, Sylvester (1879?)). If p = 3 or p ≡ 2, 5 mod 9, then p is not
the sum of two rational cubes (and thus L(1, Ep) 6= 0).

Apart from the case p ≡ 8 mod 9, where BSD and Sylvester conjecture that p is a
sum of two rational cubes, the only remaining p is the case p ≡ 1 mod 9. Here the root
number ε(Ep) = +1, so a priori L(1, Ep) could be 0 or not, but this case turns out to be
subtler than the p ≡ 2, 5 mod 9 cases. Indeed, when p ≡ 1 mod 9, L(1, Ep) is sometimes 0

24For our particular elliptic curves En, because they have CM, this does not actually require the full result
of Gross–Zagier and Kolyvagin, but follows from an earlier theorem of Coates–Wiles (1977).
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(p = 19, 37, 127, 163, 271, . . .) and sometimes not (p = 73, 109, 181, 199, 307, . . .). This case
is studied in [RVZ95], which gives several equivalent criteria for L(1, Ep) to be 0 or not for
p ≡ 1 mod 9, but they are rather involved. Here I will just state one of the more elementary
criteria:

Theorem 3.10 ([RVZ95]). Define polynomials fk(t) by f0(t) = 1, f1(t) = t2 and

fk+1(t) = (1− t3)f ′k(t) + (2k + 1)t2fk(t)− k2tfk−1(t), k ≥ 1.

Let Ak = f3k(0) and p ≡ 1 mod 9. Then L(1, Ep) = 0 if and only if p|A2(p−1)/9. Hence if
p - A2(p−1)/9 implies p is not a sum of two rational cubes; otherwise, if BSD is true, then p
is a sum of two rational cubes.

The first several polynomials fk are

f0(t) = 1,

f1(t) = t2,

f2(t) = t4 + t,

f3(t) = t6 + 4t3 + 1,

f4(t) = t8 + 13t5 + 10t2,

f5(t) = t10 + 44t7 + 71t4 + 4t,

f6(t) = t12 + 161t9 + 480t6 + 74t3 + 4.

We remark that if 3 - k, then fk(0) = 0. The first several Ak’s are

A1 = 1,

A2 = 4,

A3 = 64,

A4 = 23104,

A5 = 1537600,

A6 = 46895104,

A7 = 386187673600,

A8 = 65663406063616.

Then, for instance, we see that p = 19|A4 = 26 · 192 and p = 37|A8 = 214 · 292 · 372 · 592, so
these primes should be sums of two cubes by BSD. In fact, they are sums of two integral
cubes 19 = 32 +(−2)3 and 37 = 43 +(−3)3. (You may remember we already saw these were
sums of two integral cubes because they are the values of 3x2 + 3x+ 1 for x = 2, 3.)

We remark there are some other results known when n is not prime. For instance, Satgé
(1987) showed that if p ≡ 2 mod 9, then 2p is a sum of two rational cubes. Also, Elkies
(1994, unpublished) and [RVZ95] can treat the case of p2 in their works. See [DV09] for a
list of some similar results.

In summary, we saw a convoluted (conjectural) local-global principle (BSD) for solving
x3 + y3 = p over Q, which happens to translate into a clean local-global statement (look
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mod 9) in most cases (p 6≡ 1 mod 9), but is rather complicated in the remaining case, and
partial results are known without relying on BSD. In contrast, sums of two integral are too
rare to fill out any congruence class of primes. So while the question of which numbers are
sums of two integral cubes seems to be a closer analogue of the question “which numbers
are sums of two (integral) squares” than the question for rational cubes, the answer for
rational cubes is closer to the answer for two integral squares (Theorem 1.1). On the other
hand, it is conjectured that n is a sum of three integral cubes if and only if n 6≡ 4, 5 mod 9
(it is known that n 6≡ 4, 5 mod 9 is a sum of four integral cubes, and conjectured that every
n is a sum of four integral cubes [Coh07, Section 6.4.6]).

Well, that’s the end, at least for now. I hope you enjoyed your adventure of number
theory for the day. Good bye, and good luck on your future adventures!
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[RVZ95] Fernando Rodŕıguez Villegas and Don Zagier, Which primes are sums of two cubes?, Number
theory (Halifax, NS, 1994), 1995, pp. 295–306. MR1353940 (96g:11049)

[Ser73] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from
the French, Graduate Texts in Mathematics, No. 7. MR0344216 (49 #8956)

[Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, Second edition, Graduate Texts in Math-
ematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 (2010i:11005)

[Sil93] , Taxicabs and sums of two cubes, Amer. Math. Monthly 100 (1993), no. 4, 331–340.
MR1209462 (93m:11025)

[ST15] Joseph H. Silverman and John T. Tate, Rational points on elliptic curves, Second edition, Un-
dergraduate Texts in Mathematics, Springer, Cham, 2015. MR3363545

27

http://www.math.ou.edu/~kmartin/mfs/
http://www.math.ou.edu/~kmartin/mfs/
http://www.math.ou.edu/~kmartin/ntii/
http://www.math.ou.edu/~kmartin/ntii/

	Introduction
	Binary quadratic forms
	Sums of two squares
	Positive definite forms
	Class numbers

	Higher dimensional quadratic forms
	Ternary and quaternary quadratic forms
	Quadratic forms in arbitrary dimension

	Binary cubic forms
	Sums of two integer cubes
	Sums of two rational cubes

	References

