
VARIATIONS ON MURMURATIONS

KIMBALL MARTIN

Abstract. We explore several variations on the recently discovered phenomena of
murmurations for elliptic curves and modular forms.
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1. Introduction

Murmurations are a subtle correlation in a sufficiently large family of objects, such
as elliptic curves or modular forms, between the root number/rank of the objects and
Fourier/Dirichlet coefficients. They were first discovered numerically in the context of
elliptic curves by He, Lee, Oliver, and Pozdnyakov [HLOP]. Later, extensive computations
of Sutherland with ideas of others elucidated the patterns in murmurations, and indicated
such murmurations exist for other families of objects as well, such as modular forms
and genus 2 curves – e.g., see slides or data on Sutherland’s website.1 Zubrilina has
proved the existence and some properties of murmurations in the context of modular
forms of squarefree level [Zub]. Murmurations have also been exhibited in several other
settings, such as Dirichlet characters [LOP25], Maass forms [BLLD+], and higher rank
zeta functions of elliptic curves [SW].

In this note, I will explore some different kinds of variants of murmurations, primarily
from an empircal perspective. We will go beyond the paradigm of looking at correlations
between root numbers and Fourier/Dirichlet coefficients, and think about the following
perspectives:

(1) expected minus actual solution counts
(2) averaging arithmetic functions over subsets of integers

Date: May 2, 2025.
1https://math.mit.edu/~drew/.
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(3) traces of “arithmetic” linear operators, and generalizations

Note that ap’s of elliptic curves are of type (1). Averages of Fourier coefficients of
modular forms are traces of Hecke operators, i.e., type (3), which via the trace formula
can be expressed as class number sums, i.e., type (2). The “and generalizations” in (3)
refers to considering alternate types of trace formulas, such as Kuznetsov or relative trace
formulas, as opposed to Eichler–Selberg-type trace formulas.

Acknowledgements. This note is largely based on presentations at the workshopsMur-
murations in Arithmetic (ICERM, July 6–8, 2023) and Murmurations in Arithmetic Ge-
ometry and Related Topics (Simons Center, Nov 11–15, 2024), as well as ensuing discus-
sions with participants. For this I am grateful to the organizers. I also thank Alex Cowan,
Thomas Oliver, Andrew Sutherland, and Nina Zubrilina for several helpful discussions
and comments.

2. Review of murmurations

Let F be one of the following two types of families:

• E - elliptic curves up to isogeny, partially ordered by conductor N
• Hk - weight k cuspidal newforms with trivial nebentypus, partially ordered by
level N

Fix β > 1; by default we take β = 2 following Sutherland. Let F±(N) be the set
objects f ∈ F with conductor/level N and root number ±1. If F = E , set k = 2.
Consider the averages

A±
F (p,X) = A±

F (p,X;β) = p1−
k
2

∑′
X≤N≤βX

∑
f∈F±(N) ap(f)∑′

X≤N≤βX #F±(N)
.

The p1−
k
2 is a normalization factor, which is 1 if F = E or H2. Here the prime on the

sums over N denotes a possible restriction on the N considered — in this section we will
take N squarefree and coprime to p, largely as a computational convenience.

For F = H2, we plot A±
F (p;X) as a function of p for X = 1000 in Fig. 1 and X = 2000

in Fig. 2; the case of root number +1 is plotted in blue and root number −1 in red. Note
that these graphs look essentially the same, even though the underlying data comes from
completely disjoint sets of newforms! We have chosen the horizontal scale to range up to
p ≤ 4X in both cases, so one might conjecture that if we continue to make such graphs
for larger and larger X, they will tend to the graph of a smooth function in p

X , called the
murmuration function. This limiting property is called scale invariance in p

X (or p
N ).

Indeed this conjecture holds for any even k ≥ 2 and any β > 1, as shown by Zubrilina
[Zub] with careful estimates of class number sums coming from trace formulas. Zubrilina
also describes the resulting murmuration functions. Numerically, the same phenomenon
happens without the N squarefree restriction (the coprime to p restriction is asymp-
totically negligible), but the trace formula is more complicated and the murmuration
conjecture has not been proved in this case.

For the case of elliptic curves, again one numerically sees a sort of scale invariance
in p

X , but there is also noise in the graph that does not seem to disappear, and a more

reasonable conjecture is that the averages A±
E (p;X) only tend to a function in p

X after
suitable smoothing (e.g., smooth by averaging over nearby p for each X).
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The other thing to notice about the graphs in Figs. 1 and 2 is that the blue and
red (i.e., + and −) graphs are almost reflections of each other. Indeed the limiting
murmuration functions for opposite root numbers are precisely negatives of each other,
so for asymptotic purposes one may simply consider the difference

A∆
F (p,X) = A+

F (p,X)−A−
F (p,X).

This has the advantage that the inner sum in the numerator for A∆
F (p,X) may now (in

the case of F = Hk) be expressed as the trace

trF(N)WTp :=
∑

f∈F(N)

wfap(f) =
∑

f∈F+(N)

ap(f)−
∑

f∈F−(N)

ap(f),

where W is the Fricke involution on the newspace Snew
k (N) and wf is the root number

of f .2 Hence one can analyze such averages now with the trace formula. We note that in
the simple case of k = 2, N > 1 squarefree coprime to p, the trace formula reads

(2.1) trSnew
2 (N)WTp =

1

2

∑
s2≤ 4p

N

H(s2N2 − 4Np)− (p+ 1),

where s ∈ Z, and H is the Hurwitz class number.
Here are some additional remarks: (1) This correlation between ap’s and root numbers

is something one only sees averaging over large families, and is quantitatively quite small

— after the normalization by p1−
k
2 , each individual Fourier coefficient has size on the

order of
√
p. (2) The Birch and Swinnerton-Dyer conjecture asserts a subtle correlation

between sizes of ap’s and ranks of elliptic curves. (3) For small p, a correlation between
ap and the root number of newforms was already observed in [MP22]; the “limiting case”
of p = 1 corresponds to the bias of root numbers toward +1 from [Mar18,Mar23]. (4)
One can more generally consider correlation of an’s, but for simplicity we stick to ap’s —
this restriction makes patterns more apparent with less data.

3. No root numbers

One of the first variations that might come to mind is simply to consider averages
without fixing root numbers, which is essentially the average of A+

F (p,X) and A−
F (p,X).

As remarked above, they will tend to 0, but one can still look for structure in the behavior
as X → ∞, which can be thought of as a second-order term in comparing the convergence
to murmuration functions for root number +1 versus root number −1.

In [Mar], I conjectured the existence such murmurations without root numbers for
F = Hk, but not F = E . Specifically, consider the weighted averages

AF (p,X) = p1−
k
2

∑′
X≤N≤βX

√
N

∑
f∈F(N) ap(f)∑′

X≤N≤βX #F(N)
,

where F(N) is the set of f ∈ F of level N . Again, for simplicity, the prime on the outer
sums means in our calculations we restrict to squarefree N coprime to p, and we take
β = 2. Here we have inserted a scaling factor of

√
N in the numerator to prevent the

averages from going to 0.

2Technically one usually considers the averages of wfap(f) over F , rather than averaging separately
over each root number, but this is approximately the same as 1

2
A∆

F (p,X).
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Figure 1. Murmurations for
weight 2 modular forms of square-
free level 1000 ≤ N ≤ 2000

Figure 2. Murmurations for
weight 2 modular forms of square-
free levels 2000 ≤ N ≤ 4000

Figure 3. Weight 2 murmura-
tions without root number for X =
2000

Figure 4. Weight 2 murmura-
tions without root number for X =
4000

See Figs. 3 and 4 for graphs of AF (p,X) with F = H2, p ≤ 4X, where X = 2000 and
X = 4000, respectively. Note as in the original case of murmurations, there appears to
be scale invariance in p

X , but there is more noise in the graphs. Graphs without the
√
N

scaling look similar in shape, but have vertical range that tends to 0 as X → ∞. Graphs
in higher weight look fairly similar, and for F = Hk I conjectured that such graphs tend
to a limiting murmuration function after appropriate smoothing.

On the other hand, for elliptic curves, previous calculations of Sutherland indicate no
such murmurations if one omits root numbers. See Figs. 5 and 6 for the elliptic curve
analogues of Figs. 3 and 4, but with ranges restricted to p ≤ 2X.

To indicate the difference with the usual murmurations from Section 2, we write down
the trace formula for the inner sum trF(N) Tp =

∑
f∈F(N) ap(f) in the simple case that
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Figure 5. Elliptic curve
√
Nap

averages without root number for
X = 2000

Figure 6. Elliptic curve
√
Nap

averages without root number for
X = 4000

F = H2 and N > 1 is squarefree and coprime to p:

(3.1) trSnew
2 (N) Tp = −1

2

∑
s2≤4p

ξs2−4p(N)H(s2 − 4p) + µ(N)(p+ 1),

where ξ∆ is a certain multiplicative function defined in [Mar], and µ is the Möbius
function. (If q is a prime such that q2 ∤ ∆, then ξ∆(q) =

(
∆
q

)
− 1.)

A significance difference is that in (3.1) the number of class number terms grows with
p, so is unbounded in a limit p,N → ∞, whereas as in (2.1) the number of terms is
bounded in p

N . This makes a theoretical analysis more challenging.

4. Möbius sums

To try to analyze the averages of ap’s without root numbers from Section 3 in the
case of weight 2 modular forms, one might first try to analyze the contribution of the
µ(N)(p+1) term in (3.1). We remark that this term comes from removing the Eisenstein
contribution from the trace of Tp on Mk(N). Specifically, the contribution to AH2(p,X)
is

(4.1) Aµ
H2

(p,X) = (p+ 1)

∑′
X≤N≤βX

√
Nµ(N)∑′

X≤N≤βX dimSnew
2 (N)

.

For N squarefree, dimSnew
2 (N) = φ(N)

12 +O(logN), the approximate growth is

(4.2) Aµ
H2

(p,X) ≈ p

X2

∑′

X≤N≤βX

√
Nµ(N).

(Here ≈ means asymptotic up to a scalar.)
The right hand side is a modified version of Mertens function M(X) =

∑
1≤N≤X µ(N)

(or rather a weighted analogue of M(βX)−M(X)). It is conjectured that |M(X)/
√
X| is

unbounded. (This is subtle—recall that the Riemann hypothesis is equivalent toM(X) =
5



Figure 7. Class number versus
Möbius sums for X = 2000

Figure 8. Class number versus
Möbius sums for X = 4000

O(X
1
2
+ϵ).) Similarly, one would expect that the sum

∑′√Nµ(N) in the right hand
side of (4.2) should not be O(X), and which would mean Aµ

H2
(p,X) is not bounded as

p,X → ∞ such that p
X tends to a non-zero limit.

On the other hand, we just conjectured that AF (p,X) is bounded! How can these be
compatible? Admittedly, the asymptotics of Mertens-like functions are quite subtle, so
perhaps more care should be taken in the above approximation. Still, we suggest that the
erratic (in X) behavior of the Möbius contribution Aµ

H2
(p,X) gets canceled out with the

class number sums. That is, we propose there is an almost magical interaction between
the µ(N) term and the class number sum in trTp in (3.1). Note that in trTp there are
roughly

√
p class numbers appearing, each of order approximately

√
p, and the µ(N)

term is of size p+ 1.
As evidence for this interaction, we decompose the murmuration graphs in Figs. 3 and 4

into the class number contribution (in blue) and the Möbius contribution Aµ
H2

(p,X) (in

red) in Figs. 7 and 8. Namely, summing the red and blue graphs in the latter figures
gives the scale-invariant murmration graphs in the former figures. However, neither the
class number nor the Möbius contributions individually appear to be scale invariant, as
the slope of the Möbius contribution changes with X. See Fig. 9 for a plot of the slopes
of the Möbius contribution for 1000 ≤ X ≤ 4000.

Lastly, we remark upon the jaggedness of the red lines in these figures: note that the
expression for the Möbius contribution in (4.1) is not exactly linear in p due to the fact
that we restricted our sums over N to gcd(N, p) = 1.

5. Local root numbers

Both the usual murmurations with respect to root numbers in Section 2 and without
root number in Section 3 fall into a more general framework given in [Mar]. Namely, the
averages considered in those two situations can be seen as weighted averages of quantities
trWTp and trTp = trW1Tp, respectively.

More generally one can consider averages of trSnew
k (N)WMTp’s, where WM is a suitably

chosen Atkin–Lehner operator on Snew
k (N). (In the averages, M will potentially vary with
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Figure 9. Möbius contribution
slopes

Figure 10. Murmurations on AL
eigenspaces on S2(2q)

N ; in our notation, the Fricke involution is W = (−1)k/2WN .) Conceptually, one can
think of this variant as studying the correlation of Fourier coefficients with (the product
of) local root numbers at some subset S of places. Looking at the global root number is
the case where S is all places of Q, and no root number is the case where S is the empty
set.

We refer to [Mar] for the full context and details, along with some theoretical results.
Here we just illustrate some examples in the simple case of levels of the form N = pq,
where p < q are distinct primes. We propose that a good way to study murmurations with
respect to local root numbers is to look at murmuration graphs for each Atkin–Lehner
eigenspace, analogous to our original murmuration pictures in Figs. 1 and 2 where we
plotted graphs for each global root number separately.

For a newform f of level N = pq, the global root number wf =
∏

v wf,v where wf,v

is the local root number at v. Here wf,∞ = (−1)k/2, wf,p, wf,q ∈ {±1}, and wf,v = +1
for all other v. There are 4 Atkin–Lehner eigenspaces, which we denote by the 4 sign
patterns ++, +- and -+, --. E.g., +- will refer to the subspace of Snew

k (N) generate by
newforms with wf,p = +1 and wf,q = −1.

We present two types of examples: (i) we fix p and vary q, and (ii) we vary both p and
q. See Figs. 10 and 11 for a graphs of averages of aℓ’s over each Atkin–Lehner eigenspace
in Snew

2 (pq) and Snew
4 (pq). Here p = 2 is fixed and 3000 < q < 6000. See Fig. 12 for

Snew
4 (pq) where p < q and 6000 < pq < 12000.
In all of these plots, the blue and green dots correspond to signs ++ and -- and red

and orange dots to signs +- and -+, respectively. Adding all 4 colors corresponds to
looking at murmurations with no root number. Adding just the blue and green (resp.,
red and orange) graphs corresponds to looking at murmurations for global root number
+1 (resp., −1) when k = 4, and −1 (resp. +1) when k = 2.

We remark that if one goes beyond squarefree levels, one can also look at something
more refined than just the local root number at ramified places — one can also look at
the local inertial type of the representation. Trace formulas that will allow us to do such
calculations have been worked out in some cases recently in [Kni].
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Figure 11. Murmurations on AL
eigenspaces on S4(2q)

Figure 12. Murmurations on AL
eigenspaces on S4(pq)

6. Class number sums

Zubrilina [Zub] proved murmurations for modular forms by deriving asymptotics for
short class number sums of the form∑′

X≤N≤Y

H(s2N2 − 4Np).

This is a sum over suitable levels for a given s-term in (2.1). One can view this as a sum of
class numbers H(fs(N ; p)) where fs is a polynomial, and N runs over a restricted range.
The existence of murmurations amounts to suitably normalized sums of class numbers
having a limit as p,N → ∞ such that p

N → x for any x > 0.
Numerically we have observed one has similar behavior if one slightly varies the poly-

nomial fs(N ; p), e.g., by varying scalars or adding or subtracting smaller order terms. We
do not have a comprehensive philosophy of how such class number sums should behave,
or what polynomials are interesting, so we simply present a few numerical examples. We
begin by restricting to quadratic polynomials fs(N ; p).

As a baseline, in Fig. 13, we present a graph of

A0(p,X) :=

∑′
X≤N≤2X

∑1
s=0H(s2N2 − 4Np)∑′

X≤N≤2X N
,

for X = 1000 and p ≤ X. Here
∑′ denotes a restriction to squarefree N . This is

essentially the s = 0 and s = 1 term contributions to murmurations for F = H2 from
(2.1). We chose to include both s = 0 and s = 1 terms so that one can see some oscillation
— the terms for larger s do not contribute in the range p ≤ X.

In Fig. 14, we simply consider fs(N ; p) = s2p2 − 4Np instead of s2N2 − 4Np. Here
larger s terms come into play in the range p ≤ X, and we plot

A1(p,X) :=

∑′
X≤N≤2X

∑4
s=0H(s2p2 − 4Np)∑′

X≤N≤2X N

for X = 1000. Again there is some oscillatory behavior.
8



Figure
13. Class
number sum for
s2N2 − 4Np

Figure
14. Class
number sum for
s2p2 − 4Np

Figure
15. Class
number sum for
s2 + 1− 3Np

In Fig. 15, we plot

A2(p,X) :=

∑′
X≤N≤2X

∑4
s=0H(s2 + 1− 3Np)∑′

X≤N≤2X N

for X = 1000. Here each class number discriminant is about size −3Np, and it seems
there is not enough variation in adding s2 + 1 to cause oscillation.

In all of the above examples, while we only included graphs for X = 1000, graphs look
similar for other values of X, i.e., further calculations indicate scale invariance in p

X , i.e.,
there is a limiting graph as X → ∞.

Now we come to an example of a cubic polynomial fs(N ; p). We plot

A3(p,X) :=

∑′
X≤N≤2X

∑1
s=0H(sN3 − 4N2p)∑′

X≤N≤2X N3/2

for X = 1000 in Fig. 16. Note that we changed the normalization factor in the denomi-
nator to account for the class numbers now being of size approximately N3/2 (assuming
p ≈ X). Again the graphs look roughly similar as X → ∞, but there does not appear to
be convergence to an actual function, because we are averaging too sparse a set of class
numbers.

But we can modify the last example by averaging over more class numbers. For
instance, instead of average over ≈ X class numbers for discriminants of size ≈ X3, we
consider the following average over ≈ X3/2 such class numbers,

A4(p,X) :=

∑′
X≤N≤2X

∑
t≤

√
X

∑1
s=0H(s2N3 − tN − 4N2p)∑′

X≤N≤2X

∑
t≤

√
X N3/2

.

This average seems to converge to a function in p
X — see Fig. 17 for a plot of A4(p,X)

with X = 500.

7. L-values

Several of the murmurations we have considered are just averages of the geometric
side of a trace formula. There are other kinds of trace formulas one can consider: the
Kunzetsov trace formula, the Petersson trace formula, and more generally relative trace
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Figure 16. Class number sum for
s2N3 − 4N2p

Figure 17. Class number sum for
s2N3 − tN − 4N2p

formulas. The Kuznetsov trace formula will give sums of Fourier coefficients weighted by
inverse Petersson norms. We will not address that, but just discuss one different relative
trace formula.

One of Jacquet’s first relative trace formulas relates toric periods on quaternion alge-
bras to twisted central values of L-functions, reproving a result of Waldspurger. Eval-
uating the geometric side for the quaternion algebra gives an exact formula for average
L-values

Λ(N, k,D, n) =
∑

f∈Hk(N)

L(1/2, f)L(1/2, f ⊗ χ−D)

(f, f)
an(f),

where χ−D =
(−D

·
)
, for some fixed fundamental discriminant −D < 0. This was carried

out in [FW09,Mar22] under some hypotheses on N and D.
We just indicate what the geometric side looks like in the following simple setting,

which was originally considered in [MR12] (using the Gross–Zagier formula, rather than
Jacquet’s relative trace formula). Suppose 0 < D ≡ 3 mod 4, and N ̸= p is a prime inert
in K = Q(

√
−D). Let hD = hK and uD = [O×

K : Z×]. Also assume k = 2 for simplicity.
Then

(7.1)

√
Du2D
2π

Λ(N, k,D, n) =
12h2D
N − 1

σN (n) + uDr(nD)hD + u2D

⌊nD/N⌋∑
m=1

Φ(m,N),

where σN (n) is the sum of divisors d | n such that (d,N) = 1, r(nD) is the number of
ideals of norm nD in OK and

Φ(m,N) = d((m,D))r(m)r(pD −mN).

(Here d = σ0 is the number-of-divisors function.)
There are a couple of ways one could investigate murmuration analogues for these

quantities. For the standard trace formula for trTp or trWNTp on Snew
k (N), there are 3

parameters one can vary: N, k and p, and we varied p and N . (One can also consider
varying k—see [BBLLD].) Here there are 4 parameters: N, k,D, n. We choose to keep k
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Figure 18. Averages of twisted
L-values for X = 4000

Figure 19. Averages of twisted
L-values for X = 4000

fixed and average over N as in the original murmurations setting, and vary either D or
n = p.

First consider varying D. This amounts to considering murmurations for squares of
Fourier coefficients of half-integral weight forms (see [Wal81]). In Figs. 18 and 19, we
plot averages

AL,D(D,X) =

∑′
X≤N≤2X Λ(N, 2, D, 1)∑′

X≤N≤2X 1
=

∑′
X≤N≤2X

∑
f∈H2(N)

L(1/2,f)L(1/2,f⊗χ−D)
(f,f)∑′

X≤N≤2X 1

for X = 4000, 8000, where −D ≡ 1 mod 4 is a negative prime fundamental discriminant.
Here the prime in the sum over N refers to a restriction to primes inert in K = Q(

√
−D)

so that (7.1) is valid. We take 3 < D ≤ X along the horizontal axis, and color the
−D ≡ 1 mod 8 points blue and the −D ≡ 5 mod 8 points red.

We tried a few different normalizations/weightings of these averages, and while the
graphs look roughly similar as X increases, we did not find a simple one which is scale
invariant in D

X , or is clearly indicative of murmurations. Note that we divide by the
number of levels in the average, rather than the number of newforms, to prevent the
graphs from shrinking in scale as X grows. We also remark that such averages only pick
up forms with root number +1 because of the L(1/2, f) factor.

Finally, we consider the case of fixing D and varying n = p. Here we consider averaging
the scaled quantity in (7.1). Let

AL,p(p,X) =

∑′
X≤N≤2X Λ(N, 2, 3, p)∑′

X≤N≤2X 1
=

∑′
X≤N≤2X

∑
f∈Hk(N)

L(1/2,f)L(1/2,f⊗χ−3)
(f,f) ap∑′

X≤N≤2X 1
.

In Figs. 20 and 21, we plot AL,p(p,X) for p ≤ X (p ̸= 3) and X = 2000, 4000, coloring
the values blue or red according to χ−3(p) = +1 or −1.

These graphs are apparently scale invariant in p
X , and we expect the blue and red

graphs to tend to a limiting function after appropriate smoothing. The first linear part
of the graph corresponds to the so-called stable range p < N

D where the sum on the
11



Figure 20. Averages ap’s
weighted by L-values for X = 2000

Figure 21. Averages ap’s
weighted by L-values for X = 4000

right hand side of (7.1) vanishes (in this range, it is not hard to prove the limit exists).
This is somewhat analogous to murmurations in Section 2, where the first part of the
murmuration graph is simply given by a square root function (or a linear function if one

graphs in terms of
√

p
X , which turns out to be nicer), and more trace formula terms

contribute the further to the right one goes on the graph.
The reason to separate the cases of p inert or split in K = Q(

√
−D) it because that

affects the second term on the right hand side of (7.1). We also note that
∑′ 1 is the

correct scaling in the denominator to get scale invariance in p
X because the main term

(the first term on the right) of (7.1) is of size ≈ p
N .

8. Representations by quadratic forms

For an elliptic curve E at a good prime p, ap(E) = p + 1 − #E(Fp), which is the
deviation of expected minus actual number of solutions mod p. Hence murmurations
for elliptic curves indicate how the error in first-order point count estimates mod p is
correlated with the conductor.

One other situation in number theory where the error of first-order solution count
estimates is well studied is representations by quadratic forms. In fact, both traces
of Tp’s and the averages AL,p of L-value weighted ap’s can be interpreted in terms of
Brandt matrix entries, which can be expressed as representations numbers of quadratic
forms (e.g., see [Mar22, Section 3.3]).

The most classical case is that of representations of integers by binary quadratic forms,
which includes the Gauss circle problem. Let −D < 0 be a discriminant, and rD(n) be
the total number of ways to represent n by a positive definite reduced binary quadratic
form of discriminant −D. Then

rD(n) = 2uD
∑
d|n

χ−D(n).

In particular, for n = p the χ−D(p) measures the error of the first-order approximation
for the number of ways to represent p by a reduced form of discriminant −D. Thus one
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Figure 22. Binary quadratic
form murmurations with D odd
for X = 5000

Figure 23. Binary quadratic
form murmurations with D odd
for X = 10000

Figure 24. Binary quadratic
form murmurations with D even
for X = 5000

Figure 25. Binary quadratic
form murmurations with D even
for X = 10000

analogue of the murmuration averages for elliptic curves in the setting of positive definite
binary quadratic forms is the quantity

AD
BQF(p,X) =

1√
X

∑′

X≤D≤2X
−D∈D

χ−D(p),

where D is a chosen class of fundamental discriminants (see below) and the sum is taken

over D coprime to p. For a given p, the sum on the right should be roughly of size
√
X,

which is why we normalize by 1√
X
.

In Figs. 22 and 23 we plot the quantities AD
BQF(p,X) for p ≤ 4X, where D is either

the set of fundamental discriminants −D ≡ 1 mod 8 (in blue) or −D ≡ 5 mod 8 (in red).
13



The first plot is with X = 5000 and the second is with X = 10000. See Figs. 24 and 25
for analogous plots where D is set of fundamental discriminants of the form −4d with
either d ≡ 1 mod 4 (in blue) or d ≡ 3 mod 4 (in red). While there is a lot of noise in
these graphs, they appear to be roughly scale invariant, which indicates the existence of
murmurations in this setting.

Indeed, murmurations for quadratic (and general) Dirichlet characters were already
established in [LOP25] under GRH. They smooth out the noisiness by averaging over
nearby primes. Very recently, Cowan [Cow] obtained unconditional murmuration results,
which also apply to the setting of quadratic Dirichlet characters.
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