
A brief overview of modular and automorphic forms

Kimball Martin

Original version: Fall 2010
Revised version: June 9, 2016

These notes were originally written in Fall 2010 to provide a very quick overview of some basic
topics in modular forms, automorphic forms and automorphic representations. I have not made
any significant changes since, or even proofread them completely (so some information may be
outdated, and errors may remain), mostly just corrected some typos. If you spy any more errors,
or have suggestions, please let me know.

The main sources used in the preparation of these notes were Zagier’s notes in The 1-2-3 of
Modular Forms, Kilford’s book on modular forms, Cogdell’s Fields Institute notes on automorphic
forms and representations, and my brain. I’ve since written up course notes on modular forms, if
you want to start studying these some of things in more detail. For automorphic forms, there are
also some links to more sources on my automorphic representations course page. (I wrote some
incomplete notes for that course, but they don’t get to automorphic forms.)

1 Modular Forms

Let H = {z ∈ C|Im(z) > 0} denote the upper half-plane. Imbued with the metric ds2 = dx2+dy2

y2
,

this is a standard model for the hyperbolic plane. We do not need a great understanding of the
geometry of H to say what modular forms are, but for your peace of mind here are some basic facts:

1. The distance between any two points in H is finite.

2. Angles in H are given by Euclidean angles.

3. The distance from any point in H to the point at infinity i∞ is infinite.

4. The distance from any point in H to any point on the real line R is infinite. In fact the “points
at infinity” for H are precisely R ∪ {i∞}.

5. The straight lines, or geodesics, in H are precisely the Euclidean vertical lines and semicircles
with center on R that meet R orthogonally.

6. Any γ =

(
a b
c d

)
∈ SL2(R) defines an isometry of H given by

z 7→ γz =
az + b

cz + d
. (1)
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Note
(
−1 0
0 −1

)
z = −z

−1 = z, i.e., −I acts trivially on H. In fact, PSL2(R) = SL2(R)/ {±I}

is the group of all orientation-preserving isometries of H.

In number theory, the most important groups of isometries are the congruence (or modular)
subgroups

Γ0(N) =

{(
a b
c d

)
∈ PSL2(Z)|c ≡ 0 mod N

}
,

for N ∈ N. (We view elements of PSL2(R) or PSL2(Z) as 2×2 matrices in SL2(R) or SL2(Z), up to
a ± sign.) We call N the level of Γ0(N). Note the congruence subgroup of level 1, Γ0(1) = PSL2(Z),
which is called the full modular group.

The Γ0(N) equivalence classes of the points at infinity Q∪ {i∞} are called the cusps of Γ0(N).
The number of cusps will always be finite. For N = 1, there is only one cusp, which we denote i∞.

Definition 1.1. Let f : H → C be a holomorphic function and k ∈ N ∪ {0}. We say f is a
(holomorphic) modular form of weight k and level N if

f(γz) = (cz + d)kf(z) for z ∈ H, γ =

(
a b
c d

)
∈ Γ0(N), (2)

and f is “holomorphic at each cusp” of Γ0(N). Denote the space of modular forms of weight k and
level N by Mk(N).

We will not explain precisely the notion of being holomorphic at a cusp, but simply say that it
means there is a reasonable (in fact polynomial) growth condition on f(z) as z tends to a point at
infinity for H.

One may also define more general spaces of modular forms by generalizing the modular trans-
formation law (2). Precisely, one may consider modular forms for an arbitrary discrete subgroup Γ
of PSL2(Z) by replacing Γ0(N) with Γ in (2). One may also consider modular forms with character
χ as satisfying

f(γz) = χ(d)(cz + d)kf(z) for z ∈ H, γ =

(
a b
c d

)
∈ Γ0(N),

where χ is a Dirichlet character modulo N .

Fourier expansion

Let f ∈ Mk(N). Note T =

(
1 1
0 1

)
∈ Γ0(N) for all N . Then (2) with γ = T simply says

f(z + 1) = f(z), i.e., f is periodic. Hence it has a Fourier expansion

f(z) =
∑
n∈Z

ane
2πinz.

We put q = e2πiz and F (q) = f(z). Note as z → i∞, q → 0. Hence the Fourier expansion (or
q-expansion)

f(z) = F (q) =
∑

anq
n

may be alternatively viewed as a “power series” expansion of F (q) at q = 0, i.e., it is a “power series”
expansion of f(z) at the cusp z = i∞. Here “power series” is in quotes because we allow negative
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exponents n also. In fact, a priori, from the Fourier expansion an may be nonzero for infinitely
many negative n. However, the condition that f(z) is holomorphic at the cusp z = i∞ means that
an = 0 for n < 0.1 Thus the q-expansion above is indeed the power series expansion for f(z) at
z = i∞.

As mentioned above, in the case N = 1, z = i∞ is the only cusp of Γ0(1) = PSL2(Z). But for
higher levels N , Γ0(N) has multiple cusps and there is a similar Fourier or q-expansion

∑
n≥0 anq

n

about each cusp.

Definition 1.2. Let f ∈Mk(N). We say f is a cusp form if f vanishes at each cusp, i.e., if a0 = 0
in the q-expansion

f(z) =
∑
n≥0

anq
n

about any cusp of Γ0(N). The space of cusp forms in Mk(N) is denoted Sk(N).

Note for (most) N > 1, to check if f is a cusp form we need to check the constant term of
multiple Fourier expansions, not just one. Cusp forms are the most interesting modular forms, and
their Fourier coefficients provide arithmetic information, as we will see below.

Algebraic structure
Note that if f, g ∈Mk(N) and c ∈ C, then cf + g ∈Mk(N). Hence Mk(N) is a C-vector space.

An important fact is that for fixed k,N , the space Mk(N) is finite dimensional.

If f ∈Mk(N) and g ∈M`(N), then it is easy to see f · g ∈Mk+`(N).

Note that if M |N , then Γ0(N) ⊆ Γ0(M). So if f ∈ Mk(M), the modular transformation law
(2) for Γ0(M) automatically gives the transformation law for Γ0(N), i.e., we also know f ∈Mk(N).
Hence we always have dimMk(N) ≥Mk(M).

All of the above remarks apply equally to the space of cusp forms: Sk(N) is a finite dimensional
C-vector space; the product of two cusp forms is a cusp form whose weight is a sum of the individual
weights; and Sk(M) ⊆ Sk(N) forM |N . When studying Sk(N), one is often most interested in forms
which don’t come from a smaller level n in this trivial way. These “new forms” can be defined as
follows.

One can make Sk(N) a Hilbert space with the Petersson inner product

〈f, g〉 =

∫ ∫
Γ0(N)\H

f(z)g(z)y2k−2dxdy.

Let Soldk (N) be the subspace of Sk(N) spanned by elements of Sk(M) with M |N, M 6= N .2 Using
the Petersson inner product, we can define Snewk (N) to be its orthogonal complement, so that

Sk(N) = Soldk (N)⊕ Snewk (N).

Forms in Soldk (N) are called old forms and forms in Snewk (N) are called new forms.

Examples in level 1
1Some people also consider modular forms where the an’s may be nonzero for finitely many n < 0. These are

called weakly holomorphic modular forms.
2I’m being a bit imprecise here. The obvious embedding Sk(M) ⊆ Sk(N) is not the only one. If d| N

M
, then

f(z) 7→ f(dz) is another such embedding, and the old space is the span of the images of these different embeddings.
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For k ≥ 4 even, the Eisenstein series (of weight k and level 1)

Ek(z) =
1

2

∑
c,d∈Z

gcd(c,d)=1

1

(cz + d)k
∈Mk(1).

It has Fourier expansion

Ek(z) =
(2πi)k

ζ(k)(k − 1)!

(
−Bk

2k
+
∞∑
n=1

σk−1(n)qn

)
,

where Bk is the k-th Bernoulli number and σk−1 is the divisor function σk−1(n) =
∑

d|n d
k−1.

Fact: Any modular form of level 1, i.e., for PSL2(Z), is a polynomial in E4 and E6. Further

dimMk(1) =


bk/12c k ≡ 2 mod 12

bk/12c+ 1 k ≡ 0, 4, 6, 8, 10 mod 12

0 k odd.

In particular, dimM8(1) = 1. But both E2
4 , E8 ∈ M8(1) so they must be scalar multiples of

each other. Comparing the first Fourier coefficient shows in fact E2
4 = E8. Consequently all their

Fourier coefficients are equal, and this yields the following relation among divisor functions

n−1∑
m=1

σ3(m)σ3(n−m) =
σ7(n)− σ3(n)

120
.

We also remark that because Eisenstein series are not cusp forms (the zero-th Fourier coefficient
is nonzero), and the first cusp form does not occur until the first instance where dimMk(1) = 2,
namely k = 12. One can check that

∆(z) =
1

1728

(
E4(z)3 − E6(z)2

)
∈ S12(1)

(and is nonzero).
One can do similar Eisenstein series constructions in higher level as well.

Next, consider Jacobi’s theta function

θ(z) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + · · · , q = e2πiz.

One can check that this is a modular form of “weight 1
2 ” and level 4. (Though we haven’t defined

forms of half-integral weight, you can interpret this as θ2 ∈ S1(4).) Combinatorially it is easy to
see that

θ(z)2k =
∑
n≥0

r2k(n)qn,

i.e., θ2k ∈Mk(1) and the Fourier coefficients an = r2k(n) are precisely the number of ways one can
write n as a sum of 2k squares. Now one can compute a basis for Mk(1) in terms of Eisenstein
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series, and express θ2k in terms of this basis simply by check the first few Fourier coefficients of θ2k

(how many depends upon the dimension of Mk(1)). For example, one can show

r4(n) = 8 (σ1(n)− 4σ1(n/4)) = 8
∑
d|n
4-d

d.

(Here we interpret σ(n/4) to be 0 if n 6≡ 0 mod 4.)

Hecke operators
For each m ∈ N, Hecke defined a linear operator on the space Mk(N). If f ∈ Mk(N) with

f(z) =
∑
anq

n, then the m-th Hecke operator Tm acts as

(Tmf)(z) =
∑

bnq
n

where
bn =

∑
d| gcd(m,n)

dk−1amn/d2 ,

assuming gcd(m,N) = 1. (One defines different operators if gcd(m,N) > 1.) Note that T1f = f ,
and for a prime p - N ,

(Tpf)(z) =
∑
n : p-n

apn +

∞∑
n : p|n

(apn + pk−1an/p)q
n.

One can check that Hecke operators Tm, Tn commute when m and n are relatively prime to the level
N . It is a theorem that Sk(N) has a basis of Hecke eigenforms {f}, meaning that for each such f ,
we have Tmf = λmf for some λm ∈ C for all m with gcd(m,N) = 1. Looking at the first Fourier
coefficient, we see b1 = am = λma1 whenever gcd(m,N) = 1.

In particular, suppose N = 1 and f is a nonzero eigenform. Then a1 6= 0 for a nonzero eigenform
f , and we may normalize f by assuming a1 = 1, i.e., replace f with f/a1. Then the Hecke operator
Tm simply acts as Tmf = amf , where am is the m-th Fourier coefficient of f . One can then
conclude that the Fourier coefficients of f are multiplicative, i.e., for m,n relatively prime, we have
aman = amn. This is what makes Hecke eigenforms so nice. (Something similar is true for when
N > 1 also, but one needs to introduce some additional operators when gcd(m,N) > 1 to guarantee
a1 6= 0—otherwise, one can have eigenforms f such that an is only nonzero when n ≡ 0 mod p for
some p|N .)

L-functions
Let f(z) =

∑
anq

n ∈ Sk(N). We define its L-function (or L-series) to be

L(s, f) =

∞∑
n=1

an
ns
.

Note the similarity to the Riemann zeta function ζ(s) =
∑∞

1
1
ns . By Hecke’s bound an = O(nk/2),

one can show L(s, f) converges for Re(s) > k
2 + 1. Furthermore, it extends uniquely to an entire

function on C and satisfies the functional equation

L(s, f) = ikNk/2−s(2π)2s−kΓ(k − s)
Γ(s)

L(k − s, g)
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where g(z) = N−k/2z−kf(−1/Nz). (If N = 1, i.e., Γ = SL2(Z), then g = f .)
So far this is analogous to the Riemann zeta function (except that ζ(s) has a pole at s = 1),

but ζ(s) has another very important feature, the Euler product expansion,

ζ(s) =
∏
p

1

1− p−s
,

which is valid for Re(s) > 1. In order to do the same trick for L(s, f), we would want the Fourier
coefficients an to be multiplicative. Well, they are if f is a Hecke eigenform, and we know such
elements span Sk(N). In this case, there is an Euler product expansion

L(s, f) =
∏
p-N

1

1− app−s + pk−1−2s
·
∏
p|N

(“bad factors”).

Like the Riemann zeta function, L-functions occupy a central role in modern number theory.
For one, L-functions allow you to compare objects of different types: for an elliptic curve E3, we
can also associate an L-function L(E, s) =

∑ bn
ns where the bn’s are essentially the number of points

on the elliptic curve mod n (at least for n prime). Then we can say E and f are correspond if
L(E, s) = L(f, s). The fact that every elliptic curve (over Q) corresponds to a modular form (of
weight 2) (the Taniyama–Shimura conjecture4, or now, Modularity Theorem) was one of the most
spectacular mathematical accomplishments of the 20th century. (It’s still not known in general for
elliptic curves over other number fields). Moreover, the analytic properties of L(f, s) give important
information on the an’s. Another important feature is that the values L(f, s) at certain special
values of s (e.g., the central value L(f, k/2)) carry interesting arithmetic information (e.g., about
the an’s).

A useful variant that is often studied is the twisted L-function. If χ is a Dirichlet character, one
can consider the twist

L(f, s;χ) = L(f ⊗ χ, s) =
∑ χ(n)an

ns
.

This is a sort of hybrid between Dirichlet’s L-functions and L(f, s).

Generalizations. One can generalize the notion of modular forms to functions on higher-dimensional
analogues of the upper-half plane H. There are different ways to do this, and one ends up with
different kinds of generalized modular forms such as Hilbert modular forms, Siegel modular forms
and Jacobi forms. Additionally, one can consider “anti-holomorphic” analogues of modular forms
called Maass forms. To differentiate the original notion of modular forms from these generalizations,
one sometimes calls the modular forms we’ve defined elliptic modular forms (this terminology does
not mean they all correspond to elliptic curves, however).

2 Automorphic Forms

Classical automorphic forms
3An elliptic curve is a (smooth) cubic curve of the form y2 = x3 + ax + b. They arise in many number theory

problems. See for instance the section of sums of cubes in my notes Sums of squares, sums of cubes, and modern
number theory, which explain part of the role elliptic curves and modular forms play in determining what numbers
are sums of two (rational) cubes.

4A way to construct elliptic curves from weight 2 modular forms with integral Fourier coefficients was known
earlier by Eichler–Shimura. The Taniyama–Shimura conjecture essentially says one gets all elliptic curves this way.
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Recall the group of orientation-preserving isometries of H is G = PSL2(R) (and the action was
given above). Let K be the subgroup of G stabilizing i ∈ H. It is easy to see that K = SO(2)/ {±I}.
Since G acts transitively on H, we may in fact identify H with the quotient space

H = G/K.

Let f ∈Mk(N) and Γ = Γ0(N). Since f : H→ C we may lift f : G→ C, and f satisfies

f

((
a b
c d

)
g

)
= (cz + d)kf(g),

(
a b
c d

)
∈ Γ.

Consider the function
φ : G→ C

given by

φ

((
a b
c d

))
= (cz + d)−kf

((
a b
c d

))
.

It is evident that φ(γ) = f(1) is constant for γ ∈ Γ. Moreover, one can check that

(i) [automorphy] φ(γg) = φ(g) for γ ∈ Γ; and

(ii-a) φ(gkθ) = ekπiθφ(g) for kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ K if Γ = PSL2(Z).

If Γ 6= PSL2(Z), the analogue of (ii-a) is more complicated, but can abstractly be described as

(ii) [K-finiteness] the vector-space 〈ϕk(g) := φ(gk)|k ∈ K〉 ⊂ C∞(G) is finite dimensional.

Note that (ii-a) implies the vector-space 〈ϕk(g)|k ∈ K〉 is 1-dimensional, so (ii) is a generalization
of (ii-a).

Definition 2.1. Let Γ ⊂ G be a discrete subgroup, e.g., Γ = Γ0(N). An automorphic form for Γ is
a smooth function φ : G → C satisfying conditions (i) and (ii) above, as well as (iii) a differential
condition and (iv) “moderate growth” condition.

We will not worry about the details of (iii) and (iv), but just remark that they essentially
correspond to the conditions of (iii’) holomorphy of f on H and (iv’) holomorphy of f at the cusps.
In fact (iii) is more general that (iii’), so that the non-holomorphic analogues of modular forms,
Maass forms, are included in the definition of automorphic forms.

Note that any modular form f corresponds to an automorphic form φ, and what is going on is
the following. We may view f as a function on G which is invariant under K and satisfies some
transformation property for Γ. We can exchange f for a function φ which is invariant under Γ and
satisfies some transformation property for K. Often φ is more convenient to work with than f , and
automorphic forms generalize more naturally than modular forms, and are amenable to study with
adèles (and therefore a local-global approach) and representation theory.

One can define classical automorphic forms for symmetric spaces G/K (generalizations of H) as
follows. Let G be an algebraic group5 over R, which you can think of a group of matrices defined
by polynomial equations. For example G = GLn(R), SLn(R), SO(n) or

Sp2n(R) =

{
g ∈ SL2n(R) : tg

(
I

−I

)
g =

(
I

−I

)}
.

5For those who know about algebraic groups, we assume affine, connected, reductive here.
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This latter example is called the symplectic group of rank n. Let K be a maximal compact subgroup
of G, and Γ a discrete subgroup of G. Then φ ∈ C∞(G) is an automorphic form for Γ if (i), (ii),
(iii) and (iv) hold. Siegel modular forms are (essentially) automorphic forms on Sp4(R) (or more
generally Sp2n(R)). They are important in the theory of quadratic forms.

Adelic automorphic forms
There are basically two ways of looking at automorphic forms, the classical way described above,

and the adelic approach. The adelic approach, while considerably more involved, has a number of
advantages.

For a number field F , recall the adèles of F are the ring

AF =

{
(xv) ∈

∏
v

Fv|xv ∈ OFv for almost all (finite) places v

}
,

where {v} is the set of places of F and Fv denotes the completion of F with respect to v. Let G be
an algebraic group over F , e.g., G = GL(n), G = PSL(n), G = SO(n) or G = Sp(n). For example
if G = GL(n), then G(F ) denotes GLn(F ) and G(AF ) means GLn(AF ).

Definition 2.2. Let K be a maximal compact subgroup of G(AF ). A smooth function φ : G(AF )→
C is a (K-finite) automorphic form if

(i) [automorphy] φ(γg) = φ(g) for all γ ∈ G(F )
(ii) [K-finiteness] the space 〈φ(gk)|k ∈ K〉 is finite dimensional
(iii) φ satisfies a differential condition
(iv) φ is of moderate growth.

One also looks at larger classes of smooth automorphic forms or L2 automorphic forms, depending
on the application and/or tools one wants to use.

Example: classical modular forms
Let f ∈ Mk(1). Then we saw above this can be transformed into a classical automorphic form

φ on PSL2(R),
φ : Γ\PSL2(R)→ C

where Γ = SL2(Z). Let F = Q, G = GL(2) and Z ' GL(1) denote the center of G. A maximal
compact open subgroup of G(AQ) is K = Kf × SO(2), where Kf =

∏
p<∞G(Zp). One has the

isomorphism
Z(A)G(Q)\G(A)/Kf ' Γ\PSL2(R),

from whence it follows that φ lifts to a (smooth) function on

φ : G(A)→ C

which is left-invariant under G(Q), i.e., φ satisfies the automorphy condition (i) above. As you
might guess, it satisfies (ii)–(iv) also, and this provides the passage from modular forms of level 1 to
adelic automorphic forms. The passage for modular forms of level N is similar: it follows because
there is a subgroup KN ⊂ Kf such that

Z(A)G(Q)\G(A)/KN ' Γ0(N)\PSL2(R).
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One generalization of classical modular forms is that of Hilbert modular forms. They are easier
to describe in adelic language than classical language: namely, they are just automorphic forms on
GL2(AF ) where F is a totally real number field.

Cusp forms
The notion of a classical cusp form generalizes naturally to automorphic forms. We will skip

the motivation and explain how things work for G = GL(n). We call a subgroup P ⊂ G a parabolic
subgroup if, up to conjugation, it is of the form

P =



g1 ∗ · · · ∗
0 g2 · · · ∗
...

...
0 · · · · · · gr

 |gi ∈ GL(ni)


where n1 + · · · + nr = n. We can decompose P = MN where M ' GLn1 · · ·GLnr is the Levi
subgroup and N is the unipotent subgroup

U =



In1 ∗ · · · ∗
0 In2 · · · ∗
...

...
0 · · · · · · Inr


 .

For example, if G = GL(2), then up to conjugation there is one proper parabolic subgroup with
corresponding Levi and unipotent

P =

{(
∗ ∗
∗

)}
, M =

{(
∗
∗

)}
, N =

{(
1 ∗

1

)}
.

(Technically P = G is also a parabolic subgroup, in which case M = G and U = I.) If G = GL(3),
then up to conjugation there are two proper parabolic subgroups

P1 =


∗ ∗ ∗∗ ∗ ∗

∗

 , M1 =


∗ ∗∗ ∗

∗

 , N2 =


1 0 ∗

0 1 ∗
1

 .

and

P2 =


∗ ∗ ∗∗ ∗

∗

 , M2 =


∗ ∗

∗

 , N2 =


1 ∗ ∗

1 ∗
1

 .

Note P2 ⊂ P1, so P1 is called a maximal parabolic. One can similarly define parabolic and unipotent
subgroups for other algebraic groups G.

Definition 2.3. Let G be an algebraic group and φ be an automorphic form on G(AF ). We say φ
is a cusp form if ∫

N(F )\N(A)
φ(n)dn = 0

for all nontrivial unipotent subgroups N ⊂ G.6

6By this, I mean all N appearing in the decomposition of a proper parabolic P = MN , not arbitrary subgroups
of unipotent matrices. Technically these N are called unipotent radicals of parabolics.
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Note the integral over the quotient N(F )\N(A) makes sense since φ is left invariant by any
g ∈ G(F ), hence n ∈ N(F ). Furthermore N(F )\N(A) is compact, so the integral necessarily
converges.

Automorphic representations
Let G be an algebraic group over F and A(G(F )\G(AF )) be the space of automorphic forms on

G(AF ). It is essentially true that G(AF ) acts on A(G(F )\G(AF )) by right translation.7 Namely,

(g · φ)(x) = φ(xg).

(This is true for L2 automorphic forms, but there are some technicalities at the infinite places for
K-finite or smooth automorphic forms. So if you want the statements to be more-or-less technically
correct, just assume that we are talking about L2 automorphic forms.) For each φ, we can consider
the representation (πφ, Vφ) where Vφ = G(AF ) ·φ. These are automorphic representations of G(AF ).
They are in general infinite dimensional. If φ is cuspidal, we say πφ is a cuspidal automorphic
representation.

One way to think of this is that we can decompose the space of cusp forms Acusp(G(F )\G(AF ))
as

Acusp(G(F )\G(AF )) =
⊕
π

Vπ,

where the Vπ’s are the irreducible constituents under the action of G(AF ). Then the cuspidal auto-
morphic representations are these Vπ’s. (A similar statement is true for the non-cuspidal represen-
tations.) Looking at automorphic representations is essentially the same as looking at automorphic
forms, and it allows for the use of representation theory.

In this business, one typically wants to decompose global (adelic) objects into products of lo-
cal objects. If π is an automorphic representation, then it decomposes into a product of local
representations

π = ⊗vπv
where πv is a representation of G(Fv).

Note if G = GL(1), then G(F )\G(AF ) = GL1(F )\GL1(AF ) = F×\A×F = CF , the idèle class
group of F ! Hence automorphic forms on G are just functions on CF , and automorphic representa-
tions are precisely the idèle class characters χ for F , which can be decomposed into a tensor product
of local representations χv : Fv → C×.

If G = GL(2), F = Q, and φ comes from a classical modular eigenform f ∈ Sk(N), consider the
associated automorphic representation π = πφ. In the decomposition π = ⊗vπv = ⊗pπp ⊗ π∞, one
can determine π∞ just from the weight k of f , and πp is determined by the eigenvalue λp of the
Hecke operator Tp acting on f : Tpf = λpf .

Local representations
To study the automorphic representation π = ⊗vπv above, one wants to understand the local

representations πv. Assume v is finite, so Kv = G(OFv) is a maximal compact subgroup of G(Fv).
Each πv is an admissible representation of G(Fv), meaning πv|Kv has a finite-dimensional invariant
subspace. Further πv is unramified for almost all v, meaning πv|Kv as a 1-dimensional invariant
subspace, i.e., there is a vector φv ∈ πv which is fixed under the action of Kv.

7One typically mods out by the center (possibly with a character) if the center is not compact, but for simplicity
I’ll ignore this.
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To understand the local representations πv, one first wants a classification of the irreducible
admissible representations of G(Fv). Let us suppose G = GL(2). The simplest way to construct
representations of GL2(Fv) is via principal series. Namely, let χ1 and χ2 be two characters of F×v .
Then one can define a character of the standard parabolic subgroup P by(

a
b

)(
1 x

1

)
7→ χ1(a)χ2(b).

Let π(χ1, χ2) be the induction of this character from P to GL2(Fv), which is called a principal series
representation.

The irreducible admissible representations of GL2(Fv) are

• 1-dimensional representations — these never occur as local components πv

• special representations — an irreducible component of π(χ, χ| · |±1), which is not irreducible

• irreducible principal series — π(χ1, χ2) where χ1 6= χ2| · |±1

• supercuspidal representations — irreducible representations not occurring in any principal
series

The special and supercuspidal representations are ramified, and the irreducible principal series
may be ramified or unramified (π(χ1, χ2) is unramified if χ1 and χ2 are). All of these types of
representations occur as local components πv of an automorphic representation, and they are all
infinite dimensional. (This does not mean every irreducible principal series occurs as the component
of a global automorphic representation, but it is a theorem that all special and supercuspidals do.)
The classification for GL(n) is similar, but is more complicated for other groups.

The way to define L-functions for automorphic representations π = ⊗πv is to define local L-
functions L(s, πv) for each πv, and set

L(s, π) =
∏

L(s, πv),

which will converge in some right-half plane. To define L(s, π) and prove it has the desired prop-
erties (e.g., meromorphic continuation, functional equation) is much more complicated than for
L-functions of classical modular forms, even for G = GL(2). The case of G = GL(1) is done in
Tate’s thesis, which gives one a good indication of what needs to be done for the case of GL(2).

In the case of unramified principal series, for GL2(Fv), one associates to πv = π(χ1, χ2) the
Satake parameters tv = (av, bv) = (χ1($), χ2($)) where $ is a uniformizer for OFv . (E.g., if
Fv = Qp, then one can take $ = p.) Then the local L-function is defined to be

L(s, πv) =
1

(1− avq−s)(1− bvq−s)

where q is the size of the residue field OFv/$OFv .

Functoriality
Langlands proposed the general theory of automorphic representations as a way solve many

problems in number theory and geometry. Two main conjectures in the Langlands program are (i)
modularity, that Galois representations should correspond to automorphic representations, and (ii)
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functoriality. We will just say a little bit about functoriality. The naive idea is that if there is a
homomorphism from G into H, then automorphic representations of G should transfer to automor-
phic representations of H. A less naive (and more correct) idea is that if there is a homomorphism
from the dual group of G to the dual group of H, automorphic representations of G transfer to H.
However in our examples, each group will be its own dual, so we can temporary delude ourselves
into believing the more naive idea.

Let

G = GSp(4) =

{
g ∈ GL(4) : tg

(
I

−I

)
g = λ(g)

(
I

−I

)
for some λ(g) ∈ GL(1)

}
and H = GL(4). Siegel modular forms, in addition to being viewed as automorphic representations
of Sp4(AF ), maybe viewed as automorphic representations of GSp4(AF ), which is in some ways
a nicer group to work with. (Unlike GSp(4), Sp(4) is not its own dual group, rather its dual
group is SO(5).) Here functoriality says that embedding GSp(4) ↪→ GL(4) should yield a transfer
of automorphic representations π of GSp4(AF ) to automorphic representations of GL4(AF ). This
transfer is known, by Asgari and Shahidi (2006), for generic representations π, but is still not known
for all non-generic π.8 A consequence of this transfer would be that one can apply results about
GL(4) (which are easier to prove) to representations of GSp(4).

Similarly, transfer of generic representations of classical groups (e.g., SO(n), Sp(2n)) to an
appropriate GL(n) is known (Cogdell, Kim, Piatetski-Shapiro and Shahidi, 2004). There are several
applications of these cases of functoriality.

Another interesting case of functoriality of a different flavor comes from the symmetric power
lifts. TakeG = GL(2). Take a 2-dimensional vector space V = 〈v, w〉 so GL(2) ' GL(V ) is the group
of linear isomorphisms of V with itself. Any g ∈ GL(2) acting on V also acts on the 3-dimensional
vector space Sym2(V ) = 〈v ⊗ v, v ⊗ w,w ⊗ w〉, i.e, we can view g ∈ GL(Sym2(V )) ' GL(3). The
map

Sym2 : GL(2)→ GL(3)

obtained in this way is called the symmetric square representation of GL(2). Similarly there is a
symmetric n-th power representation

Symn : GL(2)→ GL(n+ 1),

for each n ∈ N.
Here functoriality predicts that Symn induces a transfer, called the symmetric power lift, of

automorphic representations π of GL2(AF ) to automorphic representations, denoted Symn(π), of
GLn+1(AF ). This is known for n = 2, 3, 4. (It is easy to see what the local components of Symn(π) =
⊗Symn(πv) should be, but the difficulty lies in showing the tensor product on the right actually
occurs as an automorphic representation.) Suppose π corresponds to a classical eigen cusp form
f(z) =

∑
anq

n of weight k. Then Ramanujan conjectured

|ap| ≤ 2p(k−1)/2.

This was proved by Deligne (1974, for k ≥ 2) but generalizations, such as to Maass forms or Hilbert
modular forms, are still not known. However, it would follow from knowing functoriality of all
symmetric powers for GL(2). What can be currently shown is

|ap| ≤ 2p(k−1)/2+7/64

8Update: it’s essentially known now by Arthur, at least for π with trivial central character.
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using Sym4 (for classical modular forms and the analogue for Maass forms and Hilbert modular
forms). These bounds on Fourier coefficients have many applications in number theory.

It is perhaps worth mentioning two other important cases of functoriality: base change and
automorphic induction. Suppose π is an automorphic representation of GLn(AF ) and E/F is a
Galois extension of degree d. Then base change says π should lift to an automorphic representation
of GLn(AE). Conversely, if π′ is an automorphic representation of GLn(AE), automorphic induction
says π′ should lift to an automorphic representation of degree GLnd(AF ). These are known if E/F
is cyclic of prime degree. Base change and automorphic induction can be used to show certain
Galois representations are modular, e.g., the Langlands–Tunnell Theorem, which played a key role
in Wiles’ proof of Fermat’s Last Theorem.
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