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Abstract. We prove many simultaneous congruences mod 2 for elliptic and

Hilbert modular forms among forms with different Atkin–Lehner eigenvalues.
The proofs involve the notion of quaternionic S-ideal classes and the distribu-

tion of Atkin–Lehner signs among newforms.

1. Introduction

In this paper, we use the notion of quaternionic S-ideal classes and the Jacquet–
Langlands correspondence to show certain behavior of Atkin–Lehner signs yields
many simultaneous congruences of newforms mod 2. We begin by explaining our
main results over Q, and will discuss the extensions to Hilbert modular forms at
the end of the introduction.

Let N be a squarefree product of an odd number of primes, M |N and k ∈ 2N.
By a sign pattern ε for M we mean a collection of signs εp ∈ {±1} for each p|M .
Denote the sign pattern with εp = −1 for all p|M by −M .

Let Snew
k (N) denote the span of newforms of weight k for Γ0(N). For a sign

pattern ε for M , let Snew,ε
k (N) be the subspace spanned by newforms f with p-

th Atkin–Lehner eigenvalue wp(f) = εp for all p|M . The case k = 2 is a little
different than k ≥ 4, due to the interaction with the weight 2 Eisenstein series
E2,N (z) :=

∑
d|N µ(d)dE2(dz). To state our first result uniformly, we introduce

the augmented space Snew
k (N)∗, which is just Snew

k (N) if k ≥ 4 but Snew
2 (N)∗ =

Snew
2 (N) ⊕ CE2,N . Similarly, we set Snew,ε

k (N)∗ = Snew,ε
k (N) if k ≥ 4 or ε 6= −M

and Snew,−M

2 (N)∗ = Snew,−N

2 (N)⊕ CE2,N .
Denote the n-th Fourier coefficient of a modular form f by an(f). Our first main

result is

Theorem 1.1. Suppose M,N are as above such that, for each divisor d|M with
d > 1, there exists an odd prime p|NM such that

(−d
p

)
= 1. If M is even, assume

also N
M is divisible by a prime which is 1 mod 4. Let f ∈ Snew

k (N)∗ be a newform

and ` a prime of Q̄ above 2.
Then for any sign pattern ε for M , there exists an eigenform g ∈ Snew,ε

k (N)∗

such that an(f) ≡ an(g) mod ` for all n ∈ N. Moreover, we may take g ∈ Snew
k (N)

to be a cuspidal newform if k 6= 2, ε 6= −M , or N is not an even product of 3
primes.

In particular this theorem applies if there exists a prime p|NM with p ≡ 1 mod 4

such that
(
q
p

)
= 1 for each prime q|M , e.g. M = 26 and N = 17 ·M . The theorem
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also holds with the alternative hypotheses that M ≡ 7 mod 8 is prime and N is
even (see Remark 4.1).

Quadratic reciprocity implies that if p1p2|N and p1 ≡ 3 mod 4, then M = p1 or
M = p2 satisfies the hypothesis of this theorem. This yields

Corollary 1.2. Suppose N is composite and divisible by some p ≡ 3 mod 4. Let
k ∈ 2N with k 6= 2 if N = 2p1p2 for some primes p1, p2. Fix a prime ` of Q̄ above 2.
Then for any newform f ∈ Snew

k (N), there exists a non-Galois-conjugate newform
g ∈ Snew

k (N) such that an(f) ≡ an(g) mod ` for all n ∈ N.

Our second main result is

Theorem 1.3. Let f ∈ Snew
2 (N) ⊕ CE2,N be an eigenform, and ` a prime of

Q̄ above 2. Then there exists an eigenform g ∈ Snew,−N

2 (N) ⊕ CE2,N such that
an(f) ≡ an(g) mod ` for all n ∈ N. Moreover, if N is not an even product of 3

primes, we may take g ∈ Snew,−N

2 (N).

Note many existing congruence results exclude small primes or primes divid-
ing the level, e.g. [Maz77], [Hid81] and [Yoo], whereas our method is specific to
congruences mod 2 and does not require 2 - N . Moreover, these results indicate
that congruences modulo (primes above) 2 are very common. Indeed, they seem
much more common than congruences modulo odd primes appear to occur, since
(at least large) congruence primes must divide the special value of an L-function
(e.g., see [Hid81]). Further, while many congruence results are known, simultane-
ous congruence results seem harder to come by. However, our results exhibit many
simultaneous congruences.

Namely, if ω(M) is the number of prime factors of M , Theorem 1.1 gives con-
ditions for all newforms as well as E2,N to be congruent to at least 2ω(M) (non-
Galois-conjugate) eigenforms. Further, Theorem 1.3 says that for any squarefree

level N with ω(N) odd, there are at most 1 + dimSnew,−N

2 (N) congruence classes

in Snew
2 (N). An exact formula for dimSnew,−N

2 (N) is given in [Mar2] and is ap-

proximately 2−ω(N) dimSnew
2 (N), so there must be at least one congruence class

containing many newforms when ω(N) is large.
In weight 2, we note there have been some recent results giving simultaneous

congruences. Le Hung and Li [LHL16], in their investigations on level raising mod
2, have shown for certain forms in S2(N) one gets congruences with forms with
prescribed Atkin–Lehner signs. Specifically, under the assumption that f is not
congruent to an Eisenstein series mod 2, the methods in [LHL16] give both Theo-
rem 1.3, and a version of Theorem 1.1 (at least in weight 2) where one can prescribe
all but one Atkin–Lehner sign for g. We note that our methods seem quite different,
though both make use of the Jacquet–Langlands correspondence.

On the other hand, Ribet and later Yoo (see [Yoo]) have investigated congruences
of newforms in S2(N) with Eisenstein series modulo primes p > 3 with prescribed
Atkin–Lehner signs, which gives simultaneous Eisenstein congruences under certain
conditions. Taking f = E2,N in Theorem 1.1 gives an analogue of the sufficient
conditions in [Yoo] for an Eisenstein congruence with prescribed Atkin–Lehner signs
mod 2. However we cannot specify signs at all places (except when all signs are −1
by taking f = E2,N in Theorem 1.3).

Now let us discuss the proofs, which have a couple of features we find interesting,
such as the connection with distributions of Atkin–Lehner signs and the connection
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between certain eigenspaces of quaternionic modular forms and quaternionic S-ideal
class.

First we discuss the distribution of Atkin–Lehner signs. Let us say the sign pat-
terns ε for M are perfectly equidistributed in weight k and level N if dimSnew,ε

k (N)∗

is independent of ε. We will find that perfect equidistribution in weight 2 implies
perfect equidistribution in weight k. (This is also evident from [Mar2] under the
hypotheses of Theorem 1.1.) Then we will prove that this perfect equidistribution
implies the congruences in Theorem 1.1, and use [Mar2] to see the above hypotheses
are sufficient for perfect equidistribution.

Theorem 1.3 is related to a different fact about distribution of sign patterns. In
[Mar2], we showed that although the sign patterns are equidistributed asymptot-
ically as the weight or level grows, there is a bias toward or against certain sign
patterns in fixed spaces Snew

k (N). In particular, when k = 2 and ω(N) is odd,

there is a bias towards −N in the sense that dimSnew,ε
2 (N) ≤ dimSnew,−N

2 (N)∗ for
any sign pattern ε for N . Below we will give a simple proof of this using quater-
nion algebras, and the idea behind this proof is what allows us to construct the
congruences in Theorem 1.3.

The overall strategy to get our theorems is the use of arithmetic of definite
quaternion algebras to construct congruences between quaternionic modular forms,
and then use the Jacquet–Langlands correspondence to deduce congruences for
elliptic or Hilbert modular forms. This is why we restrict to ω(N) odd over Q. We
also used this idea in [Mar1] to get Eisenstein congruences in weight 2, generalizing
results from [Maz77] and [Yoo]. Whereas in that paper we used mass formulas
for quaternionic orders to get Eisenstein congruences, here we use the structure of
quaternionic S-ideal classes to get our congruences.

In Section 2, we define the notion of S-ideal classes for quaternion algebras in
an analogous way to the definition of S-ideal classes for number fields. The S-ideal
class numbers interpolate between the usual class number and the type number of
a quaternion algebra.

In Section 3 we review the theory of (definite) quaternionic modular forms. If
B is a definite quaternion algebra of discriminant N and O is a maximal order of
B, then the space Snew

k (N)∗ corresponds to a space of Mk−2(O) of quaternionic
modular forms. These can be viewed as certain vector-valued functions on the set
of right O-ideal classes Cl(O). In the case k = 2, Snew

2 (N)∗ simply corresponds to
the space of all C-valued functions on Cl(O).

In Section 4 we describe the action of ramified Hecke operators on quaternionic
modular forms in terms of local involutions acting on Cl(O). This gives a realization
of the space of quaternionic forms corresponding to Snew,ε

k (N)∗ as certain functions
on the set of S-ideal classes ClS(O) for O. However, the precise description of
this space in general is somewhat complicated as it involves both the way the local
involutions for different primes interact globally as well as the way they interact
with the weight and the signs εp.

There are two situations where we can make this description simpler. One is
if the local involutions act on Cl(O) both without fixed points as well as without
fixing orbits of points under the other local involutions. This corresponds to the
S-class numbers being as small as possible, which corresponds to perfect equidis-
tribution of sign patterns in weight 2. From our description of quaternionic forms
corresponding to Snew,ε

k (N), we can deduce that perfect equidistribution in weight 2
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implies it in all weights. In this situation, this is enough construct the quaternionic
congruences which imply Theorem 1.1, excluding the cuspidal condition in weight 2,
upon applying our dimension formulas for Snew,ε

k (N) in [Mar2] to determine when
we have perfect equidistribution of signs.

The other situation where this description becomes simpler is in weight 2, so
one only needs to understand how the local involutions interact. Namely, if k = 2,
these forms are just the C-valued functions on the set of S-ideal classes which are
“admissible for −ε.” Since all S-ideal classes are admissible when ε = −N , this
immediately gives bias towards the sign pattern −N in weight 2. This description
also yields relations between type numbers or generally S-ideal class numbers and
dimensions of of spaces of newforms, and allows us to construct the quaternionic
congruences needed for the first part of Theorem 1.3.

To show one can take g to be a cusp form in Theorem 1.3 (and thus also Theo-
rem 1.1) when N is not an even product of 3 primes, we prove two auxiliary results.
By a variant of our argument in [Mar1], we show in Proposition 5.4 that E2,N is

congruent to a newform in Snew,−N

2 (N) under certain conditions; in particular if
ω(N) > 3 or N is a product of 3 odd primes. We treat the N prime case by show-
ing that lack of perfect equidistribution of Atkin–Lehner signs means the congruent
quaternionic modular form we construct must be cuspidal (Proposition 5.5). Us-
ing dimension formulas from [Mar2], we see that lack of perfect equidistribution is
automatic for N prime. These auxiliary results in fact give other conditions when
N = 2p1p2 where we can still take g cuspidal in Theorem 1.3—for instance, if p1

or p2 is 1 mod 4 and N > 258. See Section 5.3 for details. We note that some ex-
ceptions to taking g cuspidal when N = 2p1p2 are in fact necessary, e.g., Snew

2 (42)
and Snew

2 (70) are 1-dimensional but not all Atkin–Lehner operators act by −1.
Now we summarize what we can say in the case of Hilbert modular forms. For

simplicity, we only work over totally real fields F of narrow class number h+
F = 1,

however we expect that our arguments can be suitably modified to remove this
restriction. (See Section 3 for comments on what needs to be modified.) The proofs
we have described above then go through for Hilbert modular forms over F with
the exception of the explicit determination of when we have perfect equidistribution
of signs, as we have not worked out an analogue of [Mar2] over totally real fields.
In other words, one does not have the explicit criteria in terms of quadratic residue
symbols for the Hilbert analogue of Theorem 1.1 (see Corollary 5.2), nor does one
have exactly analogous conditions on the level for when one can take g cuspidal in
the analogue of Theorem 1.3 (see Corollary 5.3). However, we can still give some
conditions on when we can take g cuspidal in Corollary 5.3 by Proposition 5.4 which
gives Eisenstein congruences under certain hypotheses.

Lastly, we remark in [Mar1] we worked with quaternionic orders which were not
necessarily maximal (or even Eichler), which allowed us to get Eisenstein congru-
ences for any level N which is not a perfect square, though we could not always say
the congruent cusp form is new. We expect that our basic strategy here should be
generalizable to non-maximal orders, so we would not need to assume ω(N) is odd
(when F = Q) or N is squarefree. However, our dimension formulas from [Mar2]
are only for squarefree level because the trace formula we used is significantly more
complicated for non-squarefree level, though the method should apply to arbitrary
level. Potentially, this could make the hypotheses for a non-squarefree analogue of
Theorem 1.1 considerably more complicated.
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2. Quaternionic S-ideal classes

Let F be a totally real number field with narrow class number h+
F = 1, and B/F

be a totally definite quaternion algebra of discriminant N. Fix a maximal order O
of B. For any (finite) prime p of F , we have the local completions Bp = B ⊗F Fp

and Op = O ⊗Z oF,p. Then Bp/Fp is a division algebra if and only if p|N. Let

Ô× =
∏

pO
×
p and B̂× =

∏′
pB
×
p denote the finite ideles of B, i.e., the restricted

direct product of the B×p ’s with respect to the O×p ’s.
When we restrict to F = Q, we write N for N, p for p, and so on.
Recall there is a canonical bijection of

(2.1) Cl(O) := B×\B̂×/Ô×

with the set (not a group) of right (locally principal) ideal classes of O. The class
number hB = |Cl(O)| is independent of the choice of O.

The number of maximal orders in B up to B×-conjugacy is called the type
number tB of B. The conjugacy classes of maximal orders are in bijection with

(2.2) B×\B̂×/Ĝ(O),

where Ĝ(O) =
∏′

G(Op) is the stabilizer subgroup with local components G(Op) =
{x ∈ B×p : xOpx

−1 = Op}. Here G(Op) = F×p O×p if p - N and G(Op) = B×p if
p|N. The latter part follows as any finite-dimensional p-adic division algebra has a

unique maximal order. Hence Ĝ(O) = F̂×Ô× ·
∏

p|NB
×
p . Since tB is the cardinality

of (2.2) and [B×p : F×p O×p ] = 2 at ramified places (and hF = 1), one deduces that
hB

2ω(N) ≤ tB ≤ hB , where ω(N) is the number of prime ideals dividing N.
Let S be a set of primes dividing N. We define the (right) S-ideal classes of O

to be

ClS(O) := B×\B̂×/Ô×S ,
where

O×S =
∏
p∈S

B×p ×
∏
p6∈S

O×p .

This interpolates (2.1) and (2.2), and is analogous to the definition of the S-ideal
class group for number fields: if S = ∅ one gets (2.1), and if S = {p : p|N} one gets
(2.2). (The factor A×F in the quotient (2.2) makes no difference since hF = 1.) The
set ClS(O) is always finite. Denote the S-ideal class number |ClS(O)| by hB,S . If
M =

∏
p∈S p, we sometimes also write ClS(O) =: ClM(O) and hB,S =: hB,M.

3. Quaternionic modular forms

Let F , B, and O be as above. Let k = (k1, . . . , kd) ∈ (2Z≥0)d, where d = [F : Q].
Let τ1, . . . , τd denote the embeddings of F into R, and put B×∞ =

∏
B×τi . View each
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B×τi as a subgroup of GL2(C). Let (ρki , Vki) be the twist det−ki/2⊗Symki of the ki-

th symmetric power representation Symki of GL2(C) into GLki+1(C) restricted to
B×τi . The twist here gives ρki trivial central character. Put (ρk, Vk) =

⊗
(ρki , Vki).

We define the space Mk(O) of weight k quaternionic modular forms of level O
to be the space of functions ϕ : B̂× ×B×∞ → Vk satisfying

ϕ(γxu, γyg) = ρk(g−1)ϕ(x, y) for x ∈ B̂×, y ∈ B×∞, γ ∈ B×, u ∈ Ô×, g ∈ B×∞.

Alternatively, Mk(O) is the space of functions on B×\B×(A)/Ô× on which B×∞
acts on the right by ρk. We note that a consequence of our assumption h+

F = 1

is that all forms in Mk(O) are invariant under translation by the center A×F of
B×(A). Without this assumption, we could restrict to the subspace of forms with
trivial central character as in [Mar1].

For the invariance conditions on ϕ to be compatible with the transformation

condition on B×∞, it is necessary and sufficient that ϕ(x, 1) ∈ V Γ(x)
k , where Γ(x) =

xÔ×x−1 ∩B×. Write
Cl(O) = {x1, . . . , xh}

for some fixed choice of x1, . . . , xh in B×(A). Put Γi = Γ(xi). Then we can and
will view the elements ϕ ∈Mk(O) as precisely the set of functions

(3.1) ϕ : Cl(O)→
⊔
V Γi

k , ϕ(xi) ∈ V Γi

k for 1 ≤ i ≤ h.

Namely, we can view ϕ as a function of B̂× by ϕ(x) := ϕ(x, 1). Since Cl(O)

is precisely the set of orbits of B×\B×(A)/Ô× under B×∞, any ϕ ∈ Mk(O) is

completely determined by its values on x1, . . . , xh. ConsequentlyMk(O) '
⊕
V Γi

k .

Note that viewing ϕ as a function of B̂× (which we do from now on except where

explicated), ϕ is invariant under F̂× = Z(B̂×), right Ô×-invariant and transforms
on the left by ρk under B× since

(3.2) ϕ(γx) = ϕ(γx, 1) = ϕ(x, γ−1) = ρk(γ)ϕ(x, 1) = ρk(γ)ϕ(x), γ ∈ B×.
If k = 0 := (0, 0, . . . , 0), then ρk is the trivial representation soMk(O) is simply

the set of functions ϕ : Cl(O)→ C. Here we define the Eisenstein subspace E0(O)
to be the space of ϕ ∈M0(O) which factors through the reduced norm NB/F . By

the assumption that h+
F = 1, E0(O) = C1, where 1 denotes the constant function

on Cl(O). (For general F , E0(O) is h+
F -dimensional.)

In this case, we can define a normalized inner product on M0(O) to be

(3.3) (ϕ,ϕ′) =
∑ 1

[Γi : o×F ]
ϕ(xi)ϕ′(xi).

Then we define the cuspidal subspace S0(O) of M0(O) to be the orthogonal com-
plement of the Eisenstein subspace: M0(O) = E0(O)⊕ S0(O).

If k 6= 0, then nothing nonzero in Mk(O) can factor through A×F , so we put
Ek(O) = 0 and Sk(O) =Mk(O).

3.1. Hecke operators. In this section, g ∈ B̂× and we view elements of Mk(O)

as functions on B̂× by (3.1).

Fix a Haar measure dg on B̂× which gives Ô× volume 1. For α ∈ B̂×, we
associate the Hecke operator Tα :Mk(O)→Mk(O) given by

(3.4) (Tαϕ)(x) =

∫
Ô×αÔ×

ϕ(xg) dg.
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Writing Ô×αÔ× =
⊔
βjÔ× for some finite collection of βj ∈ Ô×, we can rewrite

(3.4) as the finite sum

(Tαϕ)(x) =
∑

ϕ(xβj).

For p a prime of F , let $p denote a uniformizer in Fp. Then for p - N, identify

B×p with GL2(Fp) and set αp =

(
$p 0
0 1

)
∈ B×p . For p|N, let Ep be the unramified

quadratic extension of Fp, write Bp = {
(
x $py
x̄ ȳ

)
: x, y ∈ Ep} and set αp =

$Bp
=

(
0 $p

1 0

)
∈ B×p . Here we used the notation $Bp

to indicate that this

element is a uniformizer for Bp.
For any prime p, let Tp = Tαp

, where we view αp ∈ B×p as the element β =

(βv)v ∈ B̂× satisfying βv = αp when v = p and βv = 1 otherwise. When p - N,
this definition agrees with the (suitably normalized) definition of unramified Hecke
operators for holomorphic Hilbert modular forms.

Suppose p|N. Since Op is the unique maximal order of Bp, it is fixed under
conjugation by αp = $Bp

. (In fact explicit calculation shows that conjugation by

αp in Bp acts as the canonical involution ofBp.) Consequently Ô×αpÔ× = $Bp
Ô×,

and the definition of the Hecke operator means

(3.5) (Tpϕ)(x) = ϕ(x$Bp
), p|N.

Hence, for ramified primes, since $2
Bp

= $p ∈ Z(B̂×), we have (T 2
pϕ)(x) =

ϕ(x$p) = ϕ(x), i.e., Tp acts on Mk(O) with order 2.
In this paper, we say ϕ ∈ Mk(O) is an eigenform if it is an eigenfunction of all

Tp’s. Then Mk(O) has a basis of eigenforms as (Tp)p is a commuting family of
diagonalizable operators. Recall that this is not quite true for Hilbert (or elliptic)
modular forms—rather, one either needs to restrict the definition of eigenforms
to be eigenfunctions of the unramified Hecke operators or restrict to a subspace
of newforms. In our quaternionic situation, all eigenforms are “new” because we
are working with a maximal order. The diagonalizability of the ramified Hecke
operators Tp, p|N, follows from the fact that they are involutions.

Any eigenform ϕ ∈ Mk(O) lies in an irreducible cuspidal automorphic rep-
resentation π of B×(A) with trivial central character. (Our definition of cusp
forms does not exactly match up with the usual notion of cuspidal automorphic
representations—the eigenform 1 ∈ M0(O) is not a cusp form, and it generates
the trivial automorphic representation, which is a cuspidal representation of B×(A)
using the standard definition. However, it will not correspond to a cuspidal repre-
sentation of GL2(A), which is why we do not call the form 1 a cusp form.) At a
ramified prime p, the local representation πp is 1-dimensional and factors through
the reduced norm map NBp/Fp

. Because we are working with trivial central char-
acter, either πp is the trivial representation 1p or the reduced norm map composed
with the unramified quadratic character ηp of F×p . Since Tpϕ = π($Bp

)ϕ, we see
that Tp acts on ϕ by +1 (resp. −1) if πp = 1p (resp. ηp ◦NBp/Fp

).

3.2. The Jacquet–Langlands correspondence. The Jacquet–Langlands corre-
spondence, proved in the setting of automorphic representations, gives an isomor-
phism:

Sk(O) ' Snew
k+2(N),
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where 2 := (2, . . . , 2) ∈ Nd. This isomorphism respects the action of Tp for p - N,
i.e., it is an isomorphism of modules for the unramified Hecke algebra. (To get
the right normalization of Hecke operators, we take the convention of viewing the
space of Hilbert modular forms Mk(N) adelically and defining the Hecke operators
analogously to (3.4).)

Let Stp denote the Steinberg representation of GL2(Fp). For p|N, the Atkin–
Lehner operator Wp acts on an eigenform f ∈ Snew

k+2(N) with eigenvalue −1 (resp.
+1) if the associated local representation πf,p is Stp (resp. Stp⊗ηp). In fact, we can
take this to be the definition of the Atkin–Lehner operator on the space of Hilbert
modular newforms of squarefree level. (See [SW93] for a more classical approach to
Atkin–Lehner operators for Hilbert modular forms.) A standard computation shows
that the (normalized) ramified Hecke eigenvalue ap(f) = −wp(f), i.e., Tp = −Wp

for p|N.
Since the local Jacquet–Langlands correspondence associates 1p with Stp and

ηp ◦NBp/Fp
with Stp⊗ηp, we see that the action of the ramified Hecke operators Tp

on Sk(O) corresponds to the action of Tp = −Wp on Snew
k+2(N) under the Jacquet–

Langlands correspondence. This can be viewed as a representation-theoretic gen-
eralization of the relationship between the Fricke involution on the space of weight
2 elliptic cusp forms and quaternionic theta series given by Pizer [Piz77].

While the Jacquet–Langlands correspondence is technically only a correspon-
dence of cusp forms (or rather, cuspidal representations which are not 1-dimensional),
we can extend the above Hecke module isomorphism to include all of Mk(O).

Namely, it suffices to assume k = 0, so Mk(O) is just the space of C-valued
functions on Cl(O). Then E0(O) = C1, and the p-th eigenvalue of 1 ∈ E0(O) is
simply the degree of Tp, i.e., 1 + N(p) if p - N or 1 if p|N. There is an Eisenstein
series E2,N ∈ M2(N) with these same Hecke eigenvalues for all p. When F = Q,
we may take E2,N :=

∑
d|N µ(d)dE2(dz) where E2 is the quasimodular weight 2

Eisenstein series for SL2(Z) and µ is the Möbius function. Thus when k = 0, we
can extend the above Hecke module isomorphism of cuspidal spaces to a Hecke
module isomorphism:

M0(O) ' CE2,N ⊕ Snew
2 (N).

We take wp(E2,N) = −ap(E2,N) = −1 for all p|N.
We remark that for general h+

F , the reduced norm map from B to F induces a

surjective map NB/F : Cl(O)→ Cl+(oF ), and a basis of eigenforms for E0(O) is just

the collection of maps λ◦NB/F where λ ranges over characters of Cl+(oF ). We can
still extend the Jacquet–Langlands correspondence to all of M0(O) by associating
λ ◦NB/F to E2,N ⊗ λ.

3.3. Relation with quaternionic S-ideal classes. Let M be an integral ideal
dividing N, which we just write as M when F = Q. By a sign pattern χ = χM for
M, we mean a collection of signs χp ∈ {±1} for all prime ideals p|M. If χp = +1
(resp. −1) for all p|M, we denote the sign pattern by +M (resp. −M). Also, if χ
is a sign pattern for M, denote by −χ the sign pattern given by signs −χp for all
p|M.

Consider the subspace of Mk(O) with this collection of Hecke signs:

Mχ
k(O) = 〈ϕ ∈Mk(O) is an eigenform : Tpϕ = χpϕ for all p|M〉.

Similarly we define Sχk (O) =Mχ
k(O)∩Sk(O). Note thatMχ

k(O) = Sχk (O)⊕C1 if
k = 0 and χ = +M; otherwise Mχ

k(O) = Sχk (O).
8



To keep notation consistent with [Mar2] when F = Q, we denote the space of
Hilbert newforms with fixed Atkin–Lehner (rather than Hecke) signs by

Snew,ε
k (N) = 〈f ∈ Sk(N) is a newform : Wpf = εpf for all p|M〉,

for a sign pattern ε for M. The description of the Jacquet–Langlands correspon-
dence above tells us we have Hecke module isomorphisms:

(3.6) Sχk (O) ' Snew,−χ
k+2 (N),

and

(3.7) Mχ
k(O) '

{
CE2,N ⊕ Snew,−χ

2 (N) if k = 0 and χ = +M,

Snew,−χ
k+2 (N) else.

If ϕ ∈Mχ
k(O), then it is right B×p -invariant (i.e., ϕ(xαp) = ϕ(x) for all αp ∈ B×p )

if and only if χp = +1. This implies we can view forms in M+M

k (O) as certain
functions on ClS(O). In particular, for weight zero we see that

(3.8) M+M
0 (O) ' {ϕ : ClM(O)→ C}.

Hence

(3.9) hB,M = dimM+M
0 (O) = 1 + dimSnew,−M

2 (N).

We remark that when F = Q and N = p, we have hB,p = tB so (3.9) yields

tB = 1 + S
new,−p

2 (p), which was already known to Deuring. More generally, but
still with F = Q, a relation between type numbers and the full (not new) space
of cusp forms with given Atkin–Lehner eigenvalues was given by Hasegawa and
Hashimoto [HH95], which is similar to, but slightly different than, (3.9). Note they
do not restrict to squarefree level, and their approach is essentially to use explicit
formulas for type numbers and dimensions, rather than looking through the lens of
the Jacquet–Langlands correspondence as we do here.

When F = Q, a formula for dimSnew,ε
k (N) was given in [Mar2], This translates

into an explicit formula for the S-ideal class numbers hB,S by (3.9). The general case
is somewhat complicated, so here we just explain the formula in a simple case which
will arise for us later: when S = {p}, we have hB,p = 1

2hB = 1
2 (1 + dimSnew

2 (N))
if (and only if) p satisfies condition (a), (b), or (c) of Proposition 5.5 below.

In the next section, we will generalize (3.8) to treat spaces Mχ
k(O) of higher

weight and other sign patterns χ.

4. Action of local involutions

Keep the notation of the previous section. Here, for a prime p at which B
is ramified, we will study the action of $Bp

on Cl(O). This will give a “local
involution” σp on the global space Cl(O), which by (3.5) will tell us about the action
of ramified Hecke operators onMk(O). This will result in an algebro-combinatorial
description of the spaces Mχ

k(O) for prescribed sign patterns χ.

4.1. Action on ideal classes. Let p be a prime at which B ramifies. For S = {p},
we also write ClS(O) as Clp(O). Now we have a surjective map

(4.1) Cl(O)→ Clp(O)
9



given by quotienting out on the right by B×p . Since B×p = F×p (O×p t $Bp
O×p ),

given any x ∈ B̂× the associated {p}-ideal class [x]p := B×xÔ×B×p is either [x] or

[x] t [x$Bp
], where [x] := B×xÔ×. Thus the map (4.1) has fibers of size 1 or 2.

Put another way, right multiplication by $Bp
induces an involution, i.e. a per-

mutation of order 2, on Cl(O), and the orbits of this involution are precisely the

fibers of (4.1). Denote this involution by σp, so σp([x]) = [x$Bp
] for any x ∈ B̂×.

It will be useful to know certain objects associated to ideal classes are invariant
under σp.

For a right ideal I of O, let Ol(I) = {α ∈ B : αI ⊂ I} denote the left order of

I. If I corresponds to x, we also write the left order as Ol(x). Note xÔx−1∩B is a

maximal order of B since it locally is. Since it preserves xÔ by left multiplication,
we have Ol(x) = xÔx−1 ∩ B. From this it is easy to see that Ol(x) = Ol(x′) for
x′ ∈ [x], so we may unambiguously call this the left order Ol([x]) of the ideal class
[x]. Similarly, since Γ(x) = Ol(x)×, this group only depends on [x] and we may
also write it as Γ([x]).

Lemma 4.1. For x ∈ B̂×, Ol([x]) = Ol(σp([x])) and Γ([x]) = Γ(σp([x])).

Proof. It suffices to prove the statement about left orders. By the above adelic
description of left orders, it suffices to show Ô× = $Bp

Ô×$−1
Bp

. Clearly these

groups are the same away from p, and they are the same at p since Bp has a unique
maximal order. �

In this subsection, we needed to distinguish between x, [x] and [x]p for x ∈ B̂×,
but below this is less crucial so we will use xi for an both element of Cl(O) and a

representative in B̂× as in Section 3.

4.2. Action on quaternionic modular forms. Fix a set of representatives x1, . . . , xh
for Cl(O) and let p|N. Then we may view σp as a permutation on {x1, . . . , xh}.
Writing σp(xi) = γxi$Bp

u for some γ ∈ B×, u ∈ Ô×, then by (3.2) we see

ϕ(σp(xi)) = ϕ(γxi$Bp
) = ρk(γ)ϕ(xi$Bp

).

Note that γ−1 ∈ Γσp(xi) := xi$Bp
Ô×σp(xi)

−1 ∩ B×. Thus the ramified Hecke
action in (3.5) can be rewritten as

(4.2) (Tpϕ)(xi) = ρk(γ)ϕ(σp(xi)), for some γ ∈ Γσp(xi), for all 1 ≤ i ≤ h.

We remark that for any fixed γ0 ∈ Γσp(xi), we can write any γ ∈ Γσp(xi) as
γ = γ0γ

′ where γ′ ∈ Γ(σp(xi)). Hence if the equation in (4.2) holds for a fixed i
and some γ ∈ Γσp(xi), it holds for all such γ for that i by (3.1).

Now let χ be a sign pattern for some M|N, and let γi,p ∈ Γσp(xi) for each
1 ≤ i ≤ h, p|M. Then for ϕ ∈Mk(O), we see that ϕ ∈Mχ

k(O) if and only if

(4.3) ϕ(xi) = χpρk(γi,p)ϕ(σp(xi)), for 1 ≤ i ≤ h, p|M.

In the case k = 0 so ρk is trivial, (4.3) simply becomes

(4.4) ϕ(xi) = χpϕ(σp(xi)), for 1 ≤ i ≤ h, p|M.

If σp(xi) = xi, put V
Γi,χp

k = {v ∈ V Γi

k : ρk(γi,p)v = χpv}. Note that in this case

γ2
i,p ∈ Z(B×), so γi,p acts as an involution and we have V Γi

k ' V Γi,+p

k ⊕ V Γi,−p

k . If

xi is not fixed by σp, put V
Γi,χp

k = V Γi

k .
10



Lemma 4.2. Fix χp a sign for some p|N. Order x1, . . . , xh so that x1, . . . , xt is a
set of representatives for Clp(O), where t = hB,p. Then we have an isomorphism

Mχp

k (O) ' {ϕ : Clp(O)→
⊔
V

Γi,χp

k |ϕ(xi) ∈ V
Γi,χp

k for 1 ≤ i ≤ t}.

Proof. Let ϕ be an element of the set on the right, which we temporarily denote
by A(χp). Then we extend ϕ to Cl(O) as follows: for t < j ≤ h, write xj = σp(xi)

for some 1 ≤ i ≤ t, and put ϕ(xj) = χpρk(γj,p)ϕ(xi). Note that ϕ(xj) ∈ V
Γj

k

by Lemma 4.1. This defines an embedding of A(χp) into Mχp

k (O). We will show
surjectivity by a dimension argument.

For 1 ≤ i ≤ t, let Ai(χp) be the subspace of A(χp) consisting of elements ϕ such

that ϕ(xj) = 0 if i 6= j, 1 ≤ j ≤ t. If σp fixes xi, then V Γi

k ' V
Γi,+p

k ⊕ V Γi,−p

k

implies dimAi(+p)+dimAi(−p) = dimV Γi

k . Otherwise σp(xi) = xj for some j > t,

and dimAi(+p) = dimAi(−p) = dimV Γi

k = dimV
Γj

k . Hence

dimA(+p) + dimA(−p) =

h∑
i=1

dimV Γi

k = dimMk(O),

and thus our embedding of A(χp) into Mχp

k (O) must be surjective. �

There are two situations where the above description of Mχp

k (O) becomes sim-
pler. First, if σp has no fixed points, then we can identify this space of forms with

the functions ϕ on Clp(O) such that ϕ(xi) ∈ V Γi

k for each 1 ≤ i ≤ t. Second, if
k = 0 then we can identify this space with functions ϕ : Clp(O) → C such that
ϕ(xi) = 0 if σp(xi) = xi and χp = −1.

4.3. Actions without fixed points. Let sp denote the number of orbits of size
2 for σp, so h− 2sp is the number of fixed points of σp. For ϕ ∈ M0(O), note the
equation Tpϕ = ϕ imposes sp linear constraints on ϕ: ϕ(xi) = ϕ(σp(xi)) for xi in
any orbit of size 2. On the other hand, Tpϕ = −ϕ forces ϕ(xi) = 0 for any xi fixed
by σp and ϕ(xi) = −ϕ(σp(xi)) for xi in an orbit of size 2. Hence for a sign pattern
χp for p, we have

(4.5) dimMχp

0 (O) =

{
h− sp χp = +1

sp χp = −1.

Consequently, we can compute sp from (3.7) and a dimension formula for S
new,−χp

2 (N).
In particular, σp acts without fixed points if and only if

dimS
new,+p

2 (N) = dimS
new,−p

2 (N) + 1.

Now we assume F = Q, and will use a trace formula for the Atkin–Lehner
operator Wp on Snew

2 (N) from [Mar2] to give necessary and sufficient criteria for

σp to act on Cl(O) without fixed points, which is equivalent to sp = h
2 .

Lemma 4.3. Let p|N .
(a) For p > 2, sp = h

2 if and only if
(−p
q

)
= 1 for some odd prime q|N or if N

is even and p ≡ 7 mod 8.
(b) For p = 2, sp = h

2 if and only if N is divisible by a prime which is 1 mod 4

and
(−2
q

)
= 1 for some prime q|N .

11



Proof. By (4.5), sp = h
2 if and only if dimS

new,+p

2 = 1 + dimS
new,−p

2 , i.e., if and
only if trSnew

2 (N)Wp = 1. This trace is computed in [Mar2, Prop 1.4].

Let N ′ = N/p. For m ∈ N, let modd = 2−v2(m)m be the odd part of m. We
define a constant b(p,N ′) by the following table:

b(p,N ′) b(p,N ′)
p mod 8 for N ′ odd for N ′ even
1, 2, 5, 6 1 −1

3 4 −2
7 2 0

If p > 3, the trace of interest is

(4.6) trSnew
2 (N)Wp = 1− 1

2
|Cl(Q(

√
−p))|b(p,N ′)

∏
q|N ′odd

((
−p
q

)
− 1

)
.

This is 1 if and only if the second term on the right is 0, which gives part (a) when
p > 3. If p = 3, this trace is

(4.7) trSnew
2 (N)W3 = 1− (−1)v2(N ′)

∏
q|N ′odd

((
−3

q

)
− 1

)
.

This finishes (a).
If p = 2, this trace is

(4.8) trSnew
2 (N)W2 = 1− 1

2

∏
q|N ′

((
−2

q

)
− 1

)
+
∏
q|N ′

((
−1

q

)
− 1

) .

This gives (b). �

We remark that knowing the traces of the Atkin–Lehner operatorWp on Snew
2 (N)

is the same as knowing the S-ideal class numbers hB,p together with h (see (3.9)
and [Mar2]), so one may view the above result as an application of formulas for
S-ideal class numbers, i.e., an application of the refined dimension formulas for
Snew,ε

2 (N).

4.4. Weight zero spaces. To study the spaces Mχ
k(O) in more detail, we need

to understand how the involutions σp interact for the various primes p|M. It will
be convenient to describe this in terms of a graph. The general case is somewhat
complicated, so here we treat weight zero before discussing higher weights.

Fix an integral ideal M|N and a sign pattern χ for M. We associate to χ a (signed
multi)graph Σχ as follows. Let the vertex set of Σχ be Cl(O) = {x1, . . . , xh}. For
p|M, let E(χp) denote the set of signed edges {χp · (xi, σp(xi))} where xi runs over
a complete set of representatives for the orbits of σp. (By signed edges, we mean
weighted edges, where the weights are ±1 according to whether χp = ±1.) Then
we let the edge set of Σχ be the disjoint union of the E(χp)’s. In other words,
to construct our graph Σχ on Cl(O), for all 1 ≤ i ≤ j ≤ h and p|M, we add an
(undirected) edge between xi and xj with sign χp if and only if xj = σp(xi). Note
that Σχ may have loops as well as multiple edges with the same or opposite signs.

Let X1, . . . , Xt denote the (vertex sets of the) connected components of Σχ. We
note that X1, . . . , Xt do not depend upon χ—the sign pattern only affects the signs
of the edges in Σχ. Moreover, xj lies in the connected component of xi if and only

12



if it lies in the orbit of xi under the permutation group generated by {σp : p|M}.
By the description of σp in terms of (4.1), this is equivalent to xj lying in the same
S-ideal class as xi, where S = {p : p|M}. Hence, viewing the S-ideal classes as
subsets of Cl(O), we may write ClS(O) = {X1, . . . , Xt}, and we see t = hB,S .

Let Ei be the edge set for Xi in Σχ and partition Ei = E+
i t E

−
i , where E±i

denotes the subset of edges with sign ±1. We say Xi is χ-admissible if there is a
partition Xi = X+

i tX
−
i such that the set of edges in Ei which connect a vertex

in X+
i with a vertex in X−i is precisely E−i . In this case, we call the partition

X+
i tX

−
i χ-admissible. Note that if χ = +M, then X+

i = Xi and X−i = ∅ is always
a χ-admissible partition of Xi.

Denote the set of χ-admissible Xi ∈ ClS(O) by ClS(O)χ−adm.

Proposition 4.4. Let χ be a sign pattern for M|N, S = {p : p|M}, and write
ClS(O) = {X1, . . . , Xt}. Then we have an isomorphism

Mχ
0(O) ' {ϕ : ClS(O)χ−adm → C}.

Note that when χ = +M, every class in ClS(O) is χ-admissible so this gives
(3.8).

Proof. Order x1, . . . , xh so that xi ∈ Xi for 1 ≤ i ≤ t. Let ϕ ∈ Mχ
0(O). By

(4.4), if xj1 are xj2 are vertices in Xi connected by an edge with sign ±1, then
ϕ ∈ Mχ

0(O) means ϕ(xj1) = ±ϕ(xj2). Hence the value of ϕ(xj) is determined by
ϕ(xi) (namely, is ±ϕ(xi)) whenever xj ∈ Xi. This gives a map from Mχ

0(O) into
the space of functions on ClS(O)χ−adm by restricting ϕ to be a function on the
elements xi, 1 ≤ i ≤ t, such that Xi is χ-admissible.

To show this map is a bijection, it suffices to show that for 1 ≤ i ≤ t there exists
ϕ ∈ Mχ

0(O) such that ϕ(xi) 6= 0 if and only if Xi is χ-admissible. If ϕ ∈ Mχ
0(O)

with ϕ(xi) 6= 0, then the partition of Xi into the two sets X+
i = {xj ∈ Xi :

ϕ(xj) = ϕ(xi)} and X−i = {xj ∈ Xi : ϕ(xj) = −ϕ(xi)} is a χ-admissible partition
of Xi. Conversely, if X+

i tX
−
i is a χ-admissible partition of Xi, then we can define

an element of ϕ ∈ Mχ
0(O) by setting ϕ(xj) = ±1 if xj ∈ X±i and ϕ(xj) = 0 if

xj 6∈ Xi. �

Thus dimMχ
0(O) is the number of χ-admissible classes in ClS(O), which gener-

alizes (3.9). For congruences applications, we want to know more about which Xi

are admissible. Clearly we have

Corollary 4.5. All Xi ∈ ClS(O) are χ-admissible if and only if dimMχ
0(O) =

dimM+M
0 (O).

It does not seem easy to say exactly what Σχ looks like in general, however we
can get some information from considering how the edge sets E(χp) can interact
for various p.

Lemma 4.6. If M = pM0 and X ∈ ClM0(O), then there exists X ′ ∈ ClM0(O)
such that xi ∈ X implies σp(xi) ∈ X ′.

Proof. The projection ClM0(O) → ClM(O) has fibers of size 1 or 2. If the fiber
containing X has size 1, the lemma is true with X ′ = X. Otherwise, let X ′ be
the other element in the fiber containing X. Then there exists xi ∈ X such that
σp(xi) ∈ X ′, i.e., xi$Bp

∈ X ′. One easily sees that this implies xj$Bp
∈ X ′ for all

xj ∈ X = B×xiÔ×
∏

q|M0
B×q . �
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Thus if we think of building Σχ in stages by adding the edge sets E(χp) one
prime at a time, we see that at each stage each connected component comprises
exactly one or two connected components from the previous stage. Furthermore, if
a connected component is obtained by linking two connected components X and X ′

from the previous stage, then involution σp linking X and X ′ must be a bijection
between the set of right O-ideal classes in X and those in X ′.

Consequently, each connected component Xi ∈ Σχ has cardinality 2m for some

0 ≤ m ≤ 2ω(M).

4.5. Admissibility in higher weight. Now we return to arbitrary weight k ∈
(2Z≥0)d.

As before, let M|N and put S = {p|M}. Write ClS(O) = {X1, . . . , Xt} and
Cl(O) = {x1, . . . , xh} with xi ∈ Xi for 1 ≤ i ≤ t. For a sign pattern χ for M, we

say Xi is χ-admissible in weight k if for any v ∈ V Γi

k there exists ϕ ∈Mχ
k(O) such

that ϕ(xi) = v. By the proof of Proposition 4.4, being χ-admissible in weight 0 is
just the notion of χ-admissible from the previous section.

If every Xi is χ-admissible in weight k, then similar to previous sections to we
get an isomorphism

(4.9) Mχ
k(O) ' {ϕ : ClS(O)→

⊔
V Γi

k |ϕ(xi) ∈ V Γi

k for 1 ≤ i ≤ t}

by simply restricting ϕ ∈ Mχ
k(O) to x1, . . . , xt. Without the admissibility condi-

tion, there is always an injection from the set on the left to the set on the right,
and we see that dimMχ

k(O) =
∑t
i=1 dimV Γi

k if and only if each Xi is χ-admissible
in weight k.

Lemma 4.7. Suppose dimMχ
0(O) = dimMχ′

0 (O) for any choices of sign patterns
χ, χ′ for M. Then for any k, sign pattern χ for M and Xi ∈ ClS(O), we have that
Xi is χ-admissible in weight k. Moreover, for fixed k, the spaces Mχ

k(O) have the
same dimension for all χ.

Proof. We prove this by induction on M. It is vacuously true for M = oF , so
suppose M = p0M0 and assume the lemma is true for M0. Write ClS(O) =
{X1, . . . , Xt} and order x1, . . . , xh so xi ∈ Xi for 1 ≤ i ≤ t. Put S0 = {p|M0}.
The hypothesis in the lemma with χ, χ′ taken to be the two sign patterns for M
which restrict to +M0 for M0 implies ClS(O) = 1

2ClS0(O) by (3.9). Then for any
Xi ∈ ClS(O), we may write Xi = Yi t Y ′i where Yi, Y

′
i ∈ ClS0(O). By Lemma 4.1,

the Γj ’s are the same for all xj ∈ Xi.
Fix a sign pattern χ for M and let χ0 be the restriction of χ to S0. Let χ′ be

the extension of χ0 to S such that χ′p0
= −χp0

. On one hand, we have

dimMχ0

k (O) = 2

t∑
i=1

dimV Γi

k .

On the other hand, we have

dimMχ0

k (O) = dimMχ
k(O) + dimMχ′

k (O).

But each of the dimensions on the right is at most
∑t
i=1 dimV Γi

k , so our previous

equation means in fact dimMχ
k(O) = dimMχ′

k (O) =
∑t
i=1 dimV Γi

k . This implies
both the admissibility and dimension assertions. �
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Corollary 4.8. Suppose F = Q and M |N such that, for each divisor d|M with
d 6= 1, there exists an odd p|NM such that

(−d
p

)
= 1. If M is even, we further assume

N
M is divisible by a prime p ≡ 1 mod 4. Then each Xi ∈ ClM (O) is χ-admissible
in weight k for all weights k and sign patterns χ for M .

Proof. By the lemma, we want to know that the sign patterns for M are perfectly
equidistributed in the spaceM0(O), i.e., that dimSnew,ε

2 (N) = dimSnew,−M

2 (N) +
1 for all sign patterns ε for M with ε 6= −M . This is immediate from [Mar2,
Thm 3.3] (which also immediately implies the sign patterns for M are perfectly
equidistributed in higher weight). �

Remark 4.1. If M is prime which is 7 mod 8 and N is even, then the conclusion of
the corollary also holds by Lemma 4.3.

5. Congruences

Now we prove a congruence result under admissibility hypotheses. In particular,
we will find that equidistribution of sign patterns in weight 0 implies sign patterns
are in some sense equidistributed in congruence classes in all weights.

Let F,B,O,N be as above. Fix a set of representatives x1, . . . , xh for Cl(O).

5.1. Integrality. First we describe some notions and properties of integrality.
Recall τ1, . . . , τd are the embeddings of F into C. Let E/F be a totally imaginary

quadratic extension which splits B. Then we may fix an embedding of B into M2(E)
so that O maps into M2(oE). If vi is the place of F associated to τi, the embedding
of B into M2(E) induces an embedding τBi : Bvi → M2(C) such that O maps
into M2(oEi

), where Ei the image of E under an extension of τi. We take these
embeddings in our definition of (ρk, Vk). In particular, ρki(γ) ∈ Mki+1(oEi

) for
γ ∈ O.

Let R ⊂ C be a ring such that τBi (O) ⊂ M2(R) for all 1 ≤ i ≤ d. Realizing
Vk = Cn, let Vk(R) = Rn be the subspace of “R-integral vectors.” We say ϕ ∈
Mk(O) is R-integral (with respect to x1, . . . , xh) if ϕ(xi) ∈ Vk(R) for 1 ≤ i ≤ h.
LetMk(O;R) be the R-submodule of R-integral forms inMk(O) (with respect to
x1, . . . , xh).

Recall for any Hecke operator T = Tα, there exists a finite collection of βj ∈ B̂×
such that for any ϕ ∈Mk(O),

(Tϕ)(x) =
∑

ϕ(xβj).

For any 1 ≤ i ≤ h, we can write xiβj = zijγijxmij
uij for some zij ∈ Z(B×),

γij ∈ B× ∩ O, 1 ≤ mij ≤ h, and uij ∈ Ô×. Then

(Tϕ)(xi) =
∑

ρk(γij)ϕ(xmij
), 1 ≤ i ≤ h.

By our integrality condition on γij and assumptions on R, Tϕ is R-integral when
ϕ is.

Moreover, viewing ϕ as a vector in Cnh formed by concatenating the vectors
ϕ(xi) ∈ Cn for 1 ≤ i ≤ h, we can think of T as given by a nh× nh Brandt matrix
with entries in R (in fact in Z≥0 when k = 0). Since there exists a Hecke operator
T = Tα with distinct eigenvalues, a basis of eigenforms of M(O) can be described
as a complete set of eigenvectors for some R-integral matrix T . Thus M(O) has a
basis consiting of R-integral eigenforms for some integer ring R.
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For integral ϕ,ϕ′ ∈Mk(O;R) and an ideal ` of R, we write ϕ ≡ ϕ′ mod ` if the
vectors ϕ(xi) and ϕ′(xi) are coordinate-wise congruent mod ` for all i.

5.2. Congruences under admissibility. Let M|N and S = {p|M}.

Theorem 5.1. Let ϕ ∈ Mk(O) be an eigenform, χ a sign pattern for M, and `|2
a prime of Q̄. Suppose each X ∈ ClS(O) is χ-admissible in weight k. Then there
exists an eigenform ϕ′ ∈ Mχ

k(O) such that ap(ϕ) ≡ ap(ϕ′) mod ` for all primes p
of F .

Proof. Let K be sufficiently large number field. Namely, assume K contains the
rationality fields for all eigenforms inMk(O) and τBi (O) ⊂M2(oK) for all 1 ≤ i ≤
d. We may assume ϕ is oK-integral with respect to x1, . . . , xh.

Let I be a prime ideal of oK under `, and R the localization of oK at I. A
priori, if I is not principal, it may not be possible to scale the values of ϕ so that
ϕ is R-integral and ϕ 6≡ 0 mod I, but we can pass to a finite extension of K (i.e.,
enlarge K if necessary) that principalizes I to assume this.

Let ε be the sign pattern for M such that ϕ ∈ Mε
k(O). Write ClS(O) =

{X1, . . . , Xt} and order x1, . . . , xh so that xi ∈ Xi for 1 ≤ i ≤ t. For each p|M
and 1 ≤ i ≤ h, let γi,p ∈ Γσp(xi). Then ϕ is determined by ϕ(x1), . . . , ϕ(xt) and
ϕ(xi) = εpρk(γi,p)ϕ(σp(xi)) for all i, p.

We define a function ϕ′ on Cl(O) as follows. For 1 ≤ i ≤ t, let ϕ′(xi) = ϕ(xi).
Extend ϕ′ to Cl(O) by requiring ϕ(xi) = χpρk(γi,p)ϕ(σp(xi)) for all i, p. Then
ϕ′ ∈ Mχ

k(O) by (4.9), and ϕ′(xi) = ±ϕ(xi) for 1 ≤ i ≤ h. Thus ϕ′ ≡ ϕ mod 2
with respect to x1, . . . , xh. However, this ϕ′ need not be an eigenform.

Take a basis of Mk(O) consisting of eigenforms ϕ1, . . . , ϕm ∈ Mk(O;K) such
that ϕ1 = λϕ for some λ ∈ K×. Since ϕ′ ∈ Mk(O;R) we have that ϕ′ =

∑
cjϕj

for some cj ∈ K. By rescaling our basis vectors if necessary, we may assume ϕ′ and
ϕ are R-linear combinations of ϕ1, . . . , ϕm.

Let M be the R-module generated by ϕ1, . . . , ϕm, and Mχ be the submodule
generated by the collection of ϕj ’s which lie in Mχ

k(O). Then ϕ′ ∈Mχ.
Then the integrality property of Hecke operators implies each Hecke operator Tα

acts on M as well as M/IM . Now ϕ′ ≡ ϕ mod I, so the image of ϕ′ in Mχ/IMχ

is a (nonzero) mod I eigenvector of each Tα. The Deligne–Serre lifting lemma
[DS74, Lem 6.11] now tells us there is an eigenform ϕ′′ ∈ Mχ, i.e. some ϕj , which
has the same mod I Hecke eigenvalues as ϕ′, and thus ϕ. (Note the Deligne–Serre
lemma does not tell us that we may take ϕ′′ ≡ ϕ mod I—cf. [Mar1, (3.3)].) �

Let Snew
k (N)∗ be the space Snew

k (N) if k 6= 2 and Snew
2 (N) ⊕ CE2,N if k = 2.

Similarly, for a sign pattern ε for M, let Snew,ε
k (N)∗ be Snew,ε

k (N) unless k = 2 and

ε = −M, in which case it is Snew,−M

2 (N)⊕ CE2,N.

Corollary 5.2. Let M|N. Suppose all sign patterns ε for M are equidistributed in
the space Snew

2 (N)∗, i.e. dimSnew,ε
2 (N)∗ is independent of ε. Let k ∈ (2N)d, f an

eigenform in Snew
k (N)∗ and ` a prime of Q̄ above 2. Then for any sign pattern ε

for M, there exists an eigenform g ∈ Snew,ε
k (N)∗ such that ap(f) ≡ ap(g) mod ` for

all primes p. In particular, there are at least 2ω(M) eigenforms in Snew
k (N)∗ which

are congruent to f mod `.

Proof. Use the Jacquet–Langlands correspondence, Lemma 4.7, and the above the-
orem. �
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By Corollary 4.8, this gives Theorem 1.1 when F = Q excepting the assertion
that we can take g ∈ Snew,−M

2 (N) when the weight k = 2, ε = −M and N is not
an even product of three primes. We handle this below.

Since, in weight 0, all quaternionic S-ideal classes are +M-admissible, the above
theorem also gives the following.

Corollary 5.3. Let f ∈ S2(N) be a newform and ` a prime of Q̄ above 2. Then
there exists an eigenform g ∈ S2(N) ⊕ CE2,N such that ap(f) ≡ ap(g) mod ` for
all p and ap(g) = +1 for all p|N.

This gives Theorem 1.3 when F = Q excepting the assertion about when we may
take g cuspidal.

5.3. Eisenstein and non-Eisenstein congruences. Here we will refine the latter
corollary to show that when F = Q, we can take g ∈ Snew,−M

2 (N) if N is not an
even product of three primes, which will finish the proof of both Theorem 1.1 and
Theorem 1.3.

First we refine the main theorem of [Mar1] in the setting ` = 2 and h+
F = 1.

(The proof is also similar.)

Proposition 5.4. Suppose the numerator of 21−d|ζF (−1)|N(N)
∏
p|N(1−N(p)−1)

is even and the type number tB > 1. Then there exists an newform g ∈ S2(N) such
that wp(g) = −1 for all p|N and ap(g) ≡ ap(E2,N) mod 2 for all p.

Proof. Consider the graph Σχ described above when χ is the sign pattern +N for N
with components X1, . . . , Xt. Let nj = |Xj | for 1 ≤ j ≤ t. Recall t = tB , and t > 1

means S+N
0 (O) 6= 0. By Lemma 4.3, for a fixed Xj the coefficients

|o×F |
|Γi| appearing

in (3.3) are identical for all i with xi ∈ Xj . Let cj be this number for Xj . Then

(1,1) =
∑h
i=1

|o×F |
|Γi| =

∑t
j=1 c

−1
j nj . This number is the mass m(O) of O studied by

Eichler, and equals 21−d|ζF (−1)|N(N)
∏
p|N(1−N(p)−1) (see, e.g., [Mar1]).

Let us define ϕ′ ∈ M+N
0 (O) by ϕ′(xi) = aj for all xi ∈ Xj , where aj ∈ 2Z + 1

for 1 ≤ j ≤ t. Then ϕ′ ≡ 1 mod 2, and the argument with the Deligne–Serre
lemma above will give our proposition if we can choose ϕ′ ∈ S+N

0 (O). By (3.3),

this means we want to show there is a solution to
∑t
j=1 c

−1
j ajnj = 0 in the aj ’s.

We can scale the quantities
nj

cj
by some λ ∈ Q× so that mj = λ

nj

cj
∈ Z for 1 ≤ j ≤ t

and gcd(m1, . . . ,mt) = 1.
The hypothesis that m(O) is even means

∑
mj also is. Writing aj = 2bj + 1

for all j, our desired (scaled) linear equation is that
∑
mj2bj = −

∑
mj , i.e.,∑

mjbj = − 1
2

∑
mj , which has a solution as gcd(m1, . . . ,mt) = 1. �

Hence if the hypotheses of this proposition are satisfied, we can take g to be a
newform in S2(N) in Corollary 5.3.

From now on, assume F = Q.

Then the mass m(O) is just ϕ(N)
12 , where ϕ(N) =

∏
p|N (p−1), so Proposition 5.4

tells us we can take g to be a cusp form if 8|ϕ(N) and tB > 1. Recall tB ≥ 2−ω(N)hB
and hB ≥ m(O), so tB > 1 whenever ϕ(N) > 12 ·2ω(N). This is automatic if N has
at least 5 prime divisors, in which case we also have 8|ϕ(N). Hence if ω(N) > 3,
we may take g to be a cusp form in Theorem 1.3.

Suppose N = p1p2p3 with 2 < p1 < p2 < p3. Automatically 8|ϕ(N). Also, if
p1 ≥ 5 or p1 = 3, p2 ≥ 7, or p1 = 3, p2 = 5, p3 ≥ 17 then the above reasoning shows
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tB > 1. The remaining possibilities are N = 3 · 5 · 7, N = 3 · 5 · 11 or N = 3 · 5 · 13,
and in fact one checks that tB > 1 in these three cases as well. Hence if N is an
odd product of 3 primes, we can take g to be a cusp form in Theorem 1.3.

To finish the theorems in the introduction, it thus remains treat N prime.

Proposition 5.5. Let f ∈ Snew,χ
2 (N) be a newform. Suppose there exists p|N such

that wp(f) = +1 but p does not satisfy any of the following conditions:

(a) p ≡ 7 mod 8 and N is even; or
(b) p 6= 2 and

(−p
q

)
= 1 for some odd prime q|N ; or

(c) p = 2, N is divisible by a prime which is 1 mod 4 as well a (not necessarily
different) prime q such that

(−2
q

)
= 1.

Then there exists a newform g ∈ Snew,−N

2 (N) such that f ≡ g mod 2.

Proof. Let ϕ be an associated integral newform to f . By Lemma 4.3, the hy-
pothesis on p implies σp has at least one fixed point xi ∈ Cl(O). The condition

Tpϕ = −ϕ then implies ϕ(xi) = 0. Now the construction of ϕ′ ∈ M+N
0 (O) in

Theorem 5.1/Corollary 5.3 with ϕ′ ≡ ϕ mod 2 also means ϕ′(xi) = 0.
Write ϕ′ =

∑
ajϕj as a sum of eigenforms. Note aj = 0 unless ϕj ∈ M+N

0 (O)

since ϕ′ ∈ M+N
0 (O). While we used the Deligne–Serre lemma above to get an

eigenform ϕ′′ with the same Hecke eigenvalues as ϕ′ mod 2, we gave a different
argument for this type of result in the proof of Theorem 2.1 of [Mar1]. That
argument tells us that (possibly upon replacing ϕ′ with a different form inM+N

0 (O)
which is congruent to ϕ′ mod 2) the Hecke eigenvalues of ϕj are congruent to the
Hecke eigenvalues of ϕ′ mod 2 for all j such that aj 6= 0. Say ϕm = 1 is the constant
function generating E2(O). Since ϕ′(xi) = 0 6= ϕ1(xi), it is not possible that aj = 0

for all j 6= m. This gives (at least one) ϕj ∈ S+N
0 (O) congruent to ϕ mod 2, which

gives our desired g by the Jacquet–Langlands correspondence. �

Let us finish by explicating additional conditions when F = Q and k = 2 where
we can take g to be a cusp form in Theorem 1.3. Assume N = 2p1p2 with 2 < p1 <
p2.

First note that 8|ϕ(N) if p1 or p2 is 1 mod 4. Here tB > 1 if p1 ≥ 11 or p1 = 7,
p2 ≥ 19 or p1 = 5, p2 ≥ 29 or p1 = 3, p2 ≥ 53. Thus tB > 1 if N > 294 by this
reasoning, and exact calculation of class numbers shows in fact tB > 1 if N > 258.
Hence if N > 258 is an even product of 3 primes, at least one of which is 1 mod 4,
then we can take g to be a cusp form in Theorem 1.3 by Proposition 5.4.

On the other hand, suppose p1 ≡ p2 ≡ 3 mod 4. Then p = 2 never satisfies
(a), (b) or (c) of Proposition 5.5. Now p1, p2 never satisfy (c), and satisfy (a) if
and only if they are 7 mod 8. By quadratic reciprocity,

(−p1
p2

)
= (−1)

(−p2
p2

)
, so

(b) of Theorem 1.3 will be satisfied for exactly one of p = p1 and p = p2. Hence
Proposition 5.5 cannot be used to guarantee g is a cusp form in the remaining cases
of N = 2p1p2 for f with arbitrary signs. However, it can be used to say we can take
g to be a cusp form if wp1(f) = wp2(f) = +1 (or just wpi(f) = +1 for whichever
pi does not satisfy (b)) and p1 ≡ p2 ≡ 3 mod 8.
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