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ABSTRACT. Recently, we showed that global root numbers of modular forms are biased
toward +1. Together with Pharis, we also showed an initial bias of Fourier coefficients
towards the sign of the root number. First, we prove analogous results with respect to
local root numbers.

Second, a subtle correlation between Fourier coefficients and global root numbers,
termed murmurations, was recently discovered for elliptic curves and modular forms.
We conjecture murmurations in a more general context of different (possibly empty)
combinations of local root numbers.

Last, an appendix corrects a sign error in our joint paper with Pharis.

1. INTRODUCTION

Here we study the traces of Atkin-Lehner operators on spaces of newforms SV (N) =
SpeY(To(N)). There are two main reasons we are interested in this: (1) to understand
distributions of local root numbers of newforms; (2) to explore correlation of Fourier
coefficients of newforms with respect to local root numbers, and in particular explore
variations on recently discovered murmuration phenomena. These questions are local
analogues of recent discoveries about global root numbers.

1.1. Distributions of local root numbers. In [Marl8a,Mar23|, we observed a bias of
newforms towards global root number +1, even though asymptotically these account for
50% of newforms. Namely, for fixed pair (k, V), outside of a prescribed set of exceptions,
there are strictly more newforms in Sp*V(NN) with root number +1 than —1. Moreover,
the excess number of forms with root number +1 is essentially independent of k, and is
typically an elementary factor times the class number of Q(v/—N).

In fact [Marl8a] was primarily concerned with the distribution of local root numbers
in Sp°Y (V). Suppose N is squarefree, and q1, . . ., gn, are primes dividing V. We obtained
a criterion for when the local root numbers (i.e., Atkin—Lehner eigenvalues) at ¢, ..., gm
are perfectly equidistributed in SP°V(N), i.e., the number of newforms with prescribed
local signs at ¢, . . ., ¢, does not depend on the choice of signs. We also showed that there
is a bias towards/away all local signs being —1, with the direction of the bias depending
on the parities of % and the number of prime divisors of N.

The motivation for studying the distribution of local root numbers in [Marl8a] was
for applications to congruences mod 2. Suppose further that N is a squarefree product
of an odd number of primes. In [Marl8b|, we showed that, apart from levels of the form

!After this paper appeared in Mathematika (2025), I discovered minor mathematical misprints in
Section 4.2. This version corrects those errors. (See footnote in Section 4.2 for changes.)
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N = 2pi1ps when k = 2, if the local Atkin—Lehner signs are perfectly equidistributed for
q1,- -, Gm, then for any newform f € Si(IN) and any prescribed choice of local signs at
q1,---,Gm, there is a newform g € Sk(N) with those prescribed signs which is congruent
to f mod 2. Further when k = 2, where there is a bias towards all local signs —1, one
can do the same (without perfect equidistribution) when one prescribes the local signs
of g to all be —1.

The approach in [Marl8a, Mar23] is via explicit trace formulas. However for general
levels N and arbitrary collections of prime divisors qi,...,¢n, of IV, the trace formula
is rather complicated, making a complete generalization of [Marl8a] difficult. Our first
goal here is to study the distribution of the local root number at a single prime ¢ for
general levels N. It would be interesting to see if there are similar applications to mod
2 congruences as in [Marl8b] for general N, but we do not pursue this here. (However,
see Proposition 7.1 for when quadratic twisting implies an analogous mod 2 congruence
result.)

Let ¢ be a prime, r > 1, and M > 1 such that ¢ + M. Denote by S}gew(q”M)iq the
subspace of S°V(¢"M) which is the -eigenspace of the Atkin-Lehner operator W at q.
Define

Ar(q", M) = dim S (¢" M) "9 — dim Sp¥ (¢" M) .

In other words, Ag(g", M) is the trace of W, on Sp*V(¢"M). In Section 4 we obtain very
explicit formulas for Ag(¢", M) which are of the form

Clh@(\/jq) 4+ 6,=1D1 if r is odd,

1.1 Arlg", M) =
(1.1) k(q", M) {Cz+5r=2(k?—1)D2 if r is even.

Here 6, is the Kronecker delta, and C; and D; are elementary functions which depend
on ¢ and 7, depend on the prime factorization of M (i.e., are expressible in terms of
multiplicative functions of M), and only depend in a mild way on k. In general, these
functions depend on k mod 24, and whether £ = 2, but in most cases only involve a

factor of (—l)g. The explicit form of these functions breaks up into various cases, but
for instance when ¢ =1 mod 4, r = 1, and M is odd, we have

Mg M) = 5(-1)

ISIES

K—q(M)hg( /=) + Ok=2p(M),

where p is the Mébius function, and k_, is the multiplicative function defined by (3.5).
As a consequence, outside of certain exceptional cases, we characterize when Ag(q", M)
0, and specify the sign of Ag(¢", M) when it is nonzero. Let w(M) be the number of
primes dividing M, wi(M) the number of primes sharply dividing M, and wa(n; M) the
number of p? || M such that (%) =1.
Theorem 1.1 (odd exponent). Let ¢ be a prime, M > 1 be coprime to q and write
M = 2¢M’" where M’ is odd. Let r > 1 be an odd integer. If r < 3 assume q > 5, and if
r =1 further assume that k > 4 or M is not squarefree.
Then Ak(q", M) = 0 if and only if (i) M’ is not cubefree; (ii) (%q) =1 for some
pl|| M'; (iii) e > 5; (iv) e =4 and ¢ =1 mod 4; or (v) e =1,2,3 and ¢ =7 mod 8.
Moreover, when Ag(q", M) # 0, its sign is (—1)/2For(M)tea (=M yhere b, is
the sign of the quantity o1(—q;e) in Table 2. Le., we may take bye = +1 ife =0; —1 if
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e=1,2; (_71) if e =3; and —(%) if e = 4. Hence this sign is simply (—1)%/2T<(M) yyhen

M s squarefree.

Theorem 1.2 (even exponent > 4). Let g be a prime, r > 4 even, and M > 1 coprime
to q. Assume q" # 16 and write M = 2°M’ where M’ is odd.

Then Ak(q", M) = 0 if and only if (i) M’ is not cubefree, (ii) 16 | M or (i1i) p =
1 mod 4 for some p || M'.

If Ap(q", M) # 0, then its sign is (—1)§+““(M/)+“2(71;Ml)b276, where by =1 ife = 0,3

Etw(M)

and by e = —1 if e = 1,2. In particular, this sign is (—1) if M is squarefree.

See Section 4 for analogous results for other cases (e.g., when ¢" is small, or when
r =1, k =2 and M is squarefree). We remark that sometimes Ag(q¢", M) = 0 is forced
upon us by the action of quadratic twists—see Proposition 7.1—but quadratic twisting
does not suffice to explain most cases of perfect equidistribution of local root numbers.

Due to the d,—2(k — 1)D2 term in (1.1), the behavior is different when r = 2. In this
case we describe the asymptotic behavior, which in the following setting asserts a bias
towards local root number —1.

Proposition 1.3 (exponent 2). Fiz a prime q, and consider k + M — oo such that
k > 2 is even and M > 1 is coprime to q. Then Ar(¢?>, M) — —oo. More precisely

Ap(q?, M) ~ E koo (M), where koo is the multiplicative function defined by (3.8).

We also establish the asymptotic behavior in ¢ under local conditions on M (see
Proposition 4.4). The fact that local root number distributions behave differently in
r = 2 parallels the fact that the bias of global root numbers is different for levels which
are perfect squares (see [Mar23]). We do not have a compelling intuitive explanation
for why this is (for local or global root numbers), but we do note that, when ¢ is odd,
r = 2 is precisely the case where the class of possible local representations m, at ¢
associated to newforms f € Sp*V(¢"N) includes ramified principal series and ramified
twists of Steinberg representations, all of which have local root number (;1) However,
such forms cannot account for the bias towards local root number —1 when ¢ = 1 mod 4.

We also remark that the fact that (1.1) only depends in a mild way on the weight
implies the following.

Corollary 1.4 (boundedness in k). Fiz a prime q and r > 1. Assume r # 2. Then
|Ak(q", M)| is bounded as k — oo.

This boundedness is also a simple consequence of existing trace formulas, but perhaps
was not explicitly stated in the literature. In fact our formulas yield that |Ag(q", M)]| is
typically constant in k.

Remark 1.5. The corollary implies that, if » # 2, the trace of W, on the g-new part of
Sk(¢"M) is bounded in k, and in fact only depends on k a mild way. One can view this as
very strict equidistribution of the Atkin—Lehner sign at ¢ in the weight aspect. A more
refined problem is to study the distribution of g-adic Galois representations for modular
forms at g; see recent work of Bergdall and Pollack [BP] taking r = 1.

1.2. Correlation of initial Fourier coefficients with local signs. In [MP22], we

showed that for squarefree levels IV, the trace of a Hecke operator T; on the subspace of

forms in SpV(NN) with root number +1 (resp., —1) is positive (resp., negative) for £ small
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relative to N.? In other words, for small ¢, the sign of the Fourier coefficients a(f) are
biased towards the sign of the root number of f. Combined with [Mar18a], this means
that for small ¢ the Fourier coefficients ay(f) have a positive (resp., negative) bias for
forms with the more common (resp., less common) global root number.

Here we obtain analogous results for local root numbers: for small ¢, the Fourier
coefficients ay(f) have a positive (resp., negative) bias for forms with the more common
(resp., less common) local root number. However, in this case the bias only occurs under
suitable congruence/divisibility conditions, and when these are not satisfied, there is
essentially no bias for the ay’s based on the local root number.

For simplicity, we restrict to levels of the form N = gM where M is squarefree or twice
a squarefree number.

Theorem 1.6 (bias of initial Fourier coefficients). Let ¢, denote primes such that ¢ < %.
Let M be a squarefree or twice a squarefree number which is coprime to qf. If k = 2,
further assume 4 | M. Suppose Ag(q, M) # 0.

(1) Either trgnew gy TyWy is 0 or it has the same sign as A(q, M). It is 0 if and
only if (i) (_Tq[) =1 for some odd p | M or (ii) M is even and g¢ = 7 mod 8.

(2) If q is sufficiently large with respect to k, M, ¥, and if trgnew (gar) TeWy # 0, then
the trace of Ty on SV (gM)*4 has the same sign as £Ag(q, M).

We remark that if the odd part of M is not squarefree, then the correlation between
the signs of Ag(q, M) and tr Snew (M) T, W, will alternate depending on quadratic residue

symbols involving odd primes with p? || M. On the other hand, if p? | M for an odd p or
32 | M, then one has perfect equidistribution of both local root numbers at ¢ and trace
of T, with respect to the local root number at gq. See Section 5.1 for details.

Moreover, it is clear from our trace formulas that one can similarly treat levels of the
form N = ¢"M with r > 2, and the behavior that occurs is similar to the case of r = 1.

1.3. Murmurations. Recently [HLOP] numerically discovered an oscillatory pattern,
which they call murmurations, in averages of a,’s (for ¢ prime) over elliptic curves of
fixed rank or root number. Sutherland® did further extensive calculations—for elliptic
curves, modular forms, and abelian surfaces—to help clarify and make precise the mur-
muration phenomena. The calculations for modular forms rely on the trace formula for
trgnew () TyWy. (One does not need to restrict to prime ¢, but we will for simplicity.)
We describe the phenomenon for modular forms, and then propose some generalizations,
both for modular forms and elliptic curves.

Fix k > 2 even and let F = Fj be a suitably large family of weight k& newforms, say
all weight k newforms (with trivial nebentypus), or all of those with squarefree level. Let
F(X,Y) (resp. FX(X,Y)) be the set of newforms f € F with level X < N <Y (resp.
and have have root number +1). Denote by F(X,Y)® (resp. F£(X,Y)® be the subset
of such forms with level N coprime to . The murmuration phenomena is the numerical
observation that, for a fixed 8 > 1, the averages

1 k
AF(L X5 8) = —— Yo Traf)
5 <X )
#‘F (X’BX) fe]:i(X,BX)(Z)

2There is a sign error for this result in [MP22] when & = 0 mod 4. We correct this in Section A.
3See: https://math.mit.edu/~drew/murmurations.html
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tend to continuous murmuration functions M}t(x;ﬁ) as ¢, X — oo such that % — .

The restriction to forms in ]-"i(X,Y)(E), as opposed to F*(X,Y), is just a computa-
tional convenience and will not affect asymptotics (see Section 6.4). The normalization

factor 0173 weights the Fourier coefficients so that each term is O(v/¢). In all numerical
calculations, we follow Sutherland and take 8 = 2.

See Figs. 1 and 2 for plots of A]i_-(ﬁ, X;2) for X = 1000 and X = 2000 for the weight
2 squarefree level family. Blue dots represent root number +1 and red dots —1. We
labeled the horizontal axes by ¢, but really one should think of the horizontal axes as

being labeled by %, so both graphs have horizontal range 0 < % < 4. That the graphs

have a limit in this scale is called scale invariance in %. The limiting murmuration

functions M }t oscillate infinitely [Zub].
To analyze these murmurations, since M (z; 8) = —Mx(x; 8) (see Corollary 6.3) one
can instead study a single weighted sum

1 k
(1.2) A, X5B) = e Y w(N) T 2a(f),

where w(f) is the root number of f and F(X,Y) = F7(X,Y)U F (X,Y). Then the
assertion is that Ar(¢, X;8) — Mxz(x; ) as % — x where M7 = %(M;_f - M) = M]JE

Zubrilina [Zub] proved such murmurations for A when F is the family of weight & new-
forms of squarefree level. In fact, Zubrilina proves a localized version of murmurations—
essentially this means one can work with intervals of the form [X, 5X]| where 8 — 0 as
X — oo. This leads to a continuous murmuration density function, and one obtains the
murmuration functions Mz (x; 5) by integrating the murmuration density function (and
this implies continuity in f3).

As trace formulas for more general Atkin—Lehner operators times Hecke operators, i.e.,
trgnew () TeWo (where @ = Qn | N), are in some ways quite similar to trgnew vy TeWN,
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one might wonder if murmurations similarly exist with respect to Atkin—Lehner eigen-
values. Here one needs to choose how to vary @ along with N in these the averages.

One possibility is to consider averages of the form
k
iy Np-tq e(f),
Q

AT 2 valf

#F(X ﬁX X<N<,8Xfe]—‘
where Q is a sequence of divisors @ | N for each level N appearing the family F. Here
F(N) = F(N,N), and wg(f) is the Wy-eigenvalue of f. The notation Y." means we

restrict to summing N coprime to £. The normalization factor 1/% is included to keep

(1.3) AR, X;8) =

the averages at about the same size so they do not tend to 0 as X — oo (see Section 6.2).

Note that if each @ = N then (1.3) becomes (1.2). At the other extreme if each @ =1
then we are considering sums without any root numbers (as wi(f) = 1). See Figs. 3
and 4 for plots of the averages in (1.3) in this case when k = 2. (Graphs for k = 4

are roughly similar.) Without the normalization factor of ,/ % = v/ N in this case, the

analogues of Figs. 3 and 4 are graphs which individually have similar shapes, but whose
vertical scale shrinks with X. That the unweighted averages for Q = 1 tend to 0 reflects
the root number symmetry Mt (z; 8) = =Mz (z; 8).

Remark 1.7. One could also consider weighting the sums in (1.3) by signs, e.g., (—1)~(N/@)
in the squarefree case when k > 4, to account for the initial bias from Theorems 1.1
and 1.6. However in the situations we tested including this sign actually destroys the
murmurations!

In Proposition 5.5, we write down a formula for trgnew () WoT, (for simplicity for
squarefree N) which is amenable to computing such averages. We used this to investi-
gate murmurations with respect to Atkin-Lehner signs in a variety of settings. What
seems important for the existence of such murmurations is that one considers a sequence
of (N,Q)’s which are “arithmetically compatible”. For instance, taking a sequence of
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(N,Q)’s where Q ~ v/N, we numerically saw a random distribution of averages with no
apparent murmurations.

Let N54 denote the set of squarefree positive integers, and for r > 1 let NS% be the
subset of N4 consisting of those with exactly r prime factors. We say a sequence of pairs
{(N,Q)} is arithmetically compatible in any of the following situations:

(I) N = QM where M is constant and @Q ranges over all elements of N°If or N5 such
that (M,Q) = 1.
(II) N = QM where @ is a squarefree constant and M ranges over all elements of N,
Nsaf or N3 such that (M, Q) = 1.
(ITI) Fix r > 2, let 0 < m < r, and fix primes p; < -+ < py,. Let N = p;...p, range
over elements of N3 such that P < - <pprand Q =p; ...0;, where 0 < s <r
and {i1,...,1s} is a fixed subset of {1,...,7}.

In all cases it is assumed the sequence {(N, Q)} is arranged in order of increasing N.

For instance, when r = 2, Type III consists of sequences {(N, Q) = (p1p2, Q) : p1 < p2},
where we can choose to fix p; or not, and @ is taken to be one of the following 4 fixed
forms: 1, p1,p2, p1pe. Note that Type III includes the Niqf cases of Types I and II.

In Figs. 3 and 4 where Q = 1, and more generally for Type II and II graphs, it is not
clear whether the averages A< should actually converge to a continuous function with
fluctuations in very short intervals or whether there is some inherent “random noise.” To
be more confident the limiting graphs should exist, we consider the d-smoothed averages

_ 1
A (0, X; 8) = > ALY B).
7 LX) HLO - 0 <0< 400} i f( f)

See Figs. 5 and 6 for d-smoothed versions of Fig. 4.

Conjecture 1.8 (Murmurations for Atkin-Lehner operators). Let (N, Q) be an arith-
metically compatible sequence of (N,Q)’s of Type I, II or III as above, and fix a weight
k. Let F the family of newforms which lie in Sp*(N) for some N € N.

7



FIGURE 7. Weight 4 murmura- FIGURE 8. Murmurations for AL-
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0.6 -

0.6+

0.4

i
" , a.i'i’
0.24 l OZ/A.x. !. .jg'b

.
%7

5 v
=
] ' T
y y " T 2000 2000 4000 5000 6000
4000 6000 8000 10000 12000 5" Th g
.N _-:' ane
’ "
o] 2] qg' . s
Bl g, S
A TR AN g 5
i 010 “: ‘:f.' .
—0.4 —0.4 ogth, ki NS RO .
B

(1) If (N, Q) is of Type I, then the averages AQ(E X) have murmurations which are
scale invariant in . More precisely, as £, X — oo such that é —x,

¥

AS(L, X 8) — M2(x; B)

for a murmuration function M% which is continuous on [0,00) x (1, 00).

(2) If (N,Q) is of Type II or III, then for some 6 < 1 the §-smoothed averages
AJQ_-’(S(E, X; B) have murmurations which are scale invariant in %. More precisely,
as £, X — oo such that % — x,

79,0 Q9,0
AR (X ) = MR (x; 5)
for a murmuration function M}-Q’é which is continuous on [0,00) X (1,00).

Recall that Type I murmurations with N = @ squarefree and k = 2 are illustrated
in Figs. 1 and 2. See Fig. 7 for a Type I plot with N = 5Q (Q squarefree) and k = 4,
averaging over the range 15000 < N < 30000. Similarly, non-smoothed and smoothed
Type II plots with Q = 1 are given in Figs. 3 to 6. Illustrations of Type III situations with
N = pq are presented in a different format in Figs. 8 to 10 by looking at Atkin—Lehner
eigenspaces, as will be described below.

When M = 1 and Q € N9, Conjecture 1.8 follows from [Zub], and we expect that one
can prove the general Type I case in a similar way. However, the types of sums that one
needs to handle for Types II and III will require a different type of analysis. (For Type I
and given x, there are only finitely many terms to consider from the trace formula, but
for Types IT and III there are an unbounded number of terms.) Here we merely show the
following as evidence towards the above conjecture.

Theorem 1.9. Assume (N, Q) is an arithmetically compatible family of pairs of Type
I, where N = {MQ : Q € N°¥ (Q, M) = 1} for some fized squarefree M. Then Conjec-
ture 1.8(1) holds for x < ﬁ — ¢, for any € > 0. Specifically A%(E,X;ﬁ) — /T + Op—ad
in this range, for some constants ¢ = cr g g and d = dr g 3.

8



FIGURE 9. Murmurations for AL- FIGURE 10. Murmurations for
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In particular, when M = 1, this says that the first %—th of the graphs in Figs. 3 and 4
are approximately of the form ¢y/z +d. This agrees with [Zub], which also computes ¢, d.
Similarly, the theorem asserts that the first %-th of the graph in Fig. 7 is approximately
of the form ¢\/z.

If one works with (squarefree or general) levels N that have a fixed number of prime
divisors as in Type III, then one can alternatively look how the collection of Atkin—Lehner
signs is correlated with Fourier coefficients. See Figs. 8 and 9 for a graph of averages
of ay’s over newforms in S(pq) and S4(pq) with fixed Atkin—Lehner signs at p, ¢, where
p = 2 and 3000 < g < 6000. The blue and green dots correspond to signs ++ and -- and
red and orange dots to signs +- and -+, respectively. (The first sign denotes the sign at
p, and the second the sign at ¢q.) See Fig. 10 for the analogous graph for S4(pqg) where
p, q both vary such that p < ¢ and 6000 < pg < 12000.

Conjecture 1.10 (Murmurations on Atkin—Lehner eigenspaces). Fiz k,r and 0 < m <
r. Fix primes py < -+- < pm. Let N be the set of levels N = p1...p, € NS4 such that
p1 < pa < - < pp. Let F be the family of weight k newforms with level in N'. For
e = (e1,...,&r) € £17, let F* be the subset of f € F with Atkin—Lehner sign €; at p;,
and consider the averages

1 / k
(1.4) AF(X5B) = s Y. U 2an(f).
. #FXP X)fefe(XﬂX)

These averages have murmurations which are scale invariant in %. That is, as £, X —
oo such that % -,
AF(C, X 8) = Mz (x; 8)
for a murmuration function M% which is continuous on [0,00) x (1,00).
Remark 1.11. (1) As in the case of murmurations with respect to global root num-

bers, we expect these murmuration functions oscillate infinitely, and at least for
9



Type I that they arise from murmuration density functions which correspond to
letting 8 — 0 as X — oo.

(2) In the Type I case of Conjecture 1.8, there is no need to weight by /N/Q as
N/Q is constant. For Type II, one is weighting by a constant times v/N, so by
scale-invariance one could alternatively weight by v¢. We chose to weight by
V' N/Q as it seems to be the right order of normalization in general.

(3) When averaging Fourier coefficients over Atkin-Lehner eigenspaces F¢ in Con-
jecture 1.10, there is no need to weight by an analogue of \/N/Q (or consider
smoothed averages), since the trace of Ty on F¢(NN) is a linear combination of the
traces of T;W¢g on F(N) where one sums over all @) | N. Correspondingly, we ex-
pect the murmuration functions to be different on each Atkin—Lehner eigenspace
when r = m + 1, i.e., when all but one prime is fixed in the level as in Figs. 8
and 9.

(4) Tt is not clear whether the smoothed averages are actually needed in Conjec-
ture 1.8(2), or how much smoothing is actually needed.

(5) One could also consider analogues where @ is not required to be squarefree.

See Section 6.3 for details on how Conjecture 1.10 is related to Conjecture 1.8. This
relation implies that Theorem 1.9 also provides evidence for Conjecture 1.10.

Finally, one might wonder about analogues of Conjectures 1.8 and 1.10 in the original
setting of elliptic curves. Earlier calculations of Sutherland indicate that there are no
apparent murmurations if one does not weight by any root number; more generally our
calculations also do not suggest any murmurations for elliptic curves in Type II situations.

However, numerically there appear to be murmurations in Type I situations, i.e., N =
QM with M fixed and @) varying, at least after smoothing. For instance, see Fig. 11
for a plot of flgg(& X;2) for the family with N = 2Q squarefree, X = 20000 and S = 2,
and Fig. 12 for the smoothed averages flgg’&(é, X) with 0 = 0.75. For comparison, these
averages (in blue) are plotted on top of the averages (1.2) weighted by global root numbers
(in red). This suggests the following.

Conjecture 1.12 (Partial root number murmurations for elliptic curves). Let (N, Q)
be an arithmetically compatible sequence of (N,Q)’s of Type I. Let £ the set of rational
newforms which lie in So(N) for some N € N. Then for some § < 1, the smoothed
averages /ngg’é(f,X; B) have murmurations which are scale invariant in %.

As in the Type II and III cases for modular forms, it is not clear whether the smoothing
in Conjecture 1.12 should be needed (even in the global root number case of @ = N).

1.4. Additional remarks. We checked the results stated in the introduction, as well
as many of our formulas below, numerically in Sage [Sage| for a wide variety of small
parameters.

Acknowledgements. I thank John Bergdall, Alex Cowan, Nina Zubrilina, and the
anonymous referee for some helpful comments and discussions. Some of the computing for
this project was performed at the OU Supercomputing Center for Education & Research
(OSCER) at the University of Oklahoma (OU).
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FIGURE 11. wgq (blue) versus wy

(red) murmurations for elliptic FIGURE 12. §-smoothed analogues
curves of squarefree conductor of Fig. 11 with § = %
N = 2Q, with 20000 < @ < 40000 al

2. NOTATION AND PRELIMINARIES

2.1. Class numbers. Let A = A\2Ag, where A is a negative fundamental discriminant.
Let h'(A) be the weighted class number for primitive binary negative definite quadratic
forms of discriminant A. Explicitly, h/(—3) = %, /(—4) = 3, and h/(Ag) = h(A) is the
usual class number if Ag < —4. Moreover,

Ag\ A
(2.) HO280) =78 W (B0), 1200 = S le)(5) 5
d|A
Since ya, is a Dirichlet convolution of multiplicative functions, it is also multiplicative,
and given on (nontrivial) prime powers by

Vo (p™) = ™ (p — <Apo>> :

Let A < 0andt > 1. Let Hi(A) = H(A) be the Hurwitz class number. This is
defined by

H(A) =) W(d*Ao),
d|A

where we write A = A\2A for a fundamental discriminant Ag. One deduces (e.g., [Mar23,
(2.3)]) that

D HOM) =i @), s, = S u@) () ov/a),
A

Just like ya,, we have that na, is multiplicative and it is given on prime powers by

a0 (™) = o (p™) — (Apo> a(p™ ).
11



For t > 2, write (t, A) = a?b where b is squarefree, and put A’ = A/(t, A), t' = t/(t,A).

Set
H(a) = | EDOEHD ) b A,
0 else.

2.2. Other quantities arising in the trace formula. Fix s € Z and £ > 1. Let p,p
denote the roots of z2 — sX + £. Define

pk—1_ph—1 e 9
{p_ﬁ if 52 4 4,

Pr(s, ) = (k — 1)(%)/?—2 if 2 = 44.

In particular, when s = 0, the roots p, p are +=+/—¢, and

pe(0,0) = (—0)3 L,
We also remark that
pa(s,l) =1

and
s

k
) =027 0o (—2),
pk(s ) k 2(2\/2)

where Uy (t) denotes the Chebyshev polynomial of the second kind.
Let Q(n) be the greatest integer such that Q(n)? | n.

3. TRACES ON NEWSPACES

Fix an even weight k > 2, a prime ¢ and positive integers £, M. Assume ¢,¢, M are
pairwise coprime. The Atkin-Lehner operator Wy, defined as in [AL70], acts on Si (V).
This action is taken to be the trivial action when (¢, N) = 1.

For an integer r > 0, set

t(r; M) = trg, (grany TeWy, " (r; M) = trgnew (grary TeWy.

(Throughout the analysis in this section, ¢, ¢, k will be fixed, so we suppress them from
our notation for brevity.) For r < 0, we interpret these quantities to be 0. When ¢ = 1,
"V (r; M) = Ag(q", M).

Fix a newform g € S;(¢"°Mp). Denote by wgy(g) the eigenvalue for g under the action
of Wy on Si(¢"My). Let N = ¢"M, and assume that ro < and My | M. Let ﬂév denote
the subspace of S(NN) spanned by forms g(dz) where d | ¢"~"° M, M. Then T, acts by

a scalar on m2. One computes the trace of W, on Wév from [AL70, (5.1)—(5.2)], which

g -
yields
v T, = 4 0 Mo)ar(g)wglg) i =romod 2,
’ 0 else.
Thus
t(T;M) = Z Z UO(M/MO)tneW<T0;MO>_
ro<r Mo|M
ro=r mod 2

Hence

t(r M) —t(r — 2, M) = > oo(M/Mo)t"*™ (r; My).
M| M



Since 09 = 1 % 1 (where % denotes Dirichlet convolution) and the Dirichlet inverse of
the constant function 1 is u, the Dirichlet inverse of og is p* ¢, which is the multiplicative
function defined by

-2 ifm=1,
(pxp)(P™) =41 ifm=2,
0 if m > 3.

Thus

2 (r, M) =Y (o p)(d) (¢(r; M/d) — t(r — 2 M/d)).
d|M

Reorganizing the trace formula from [SZ88, (2.7)], we see that

(31) t(’l”; M) = AL()(T; M) — 57"22 Al’l(T —2; M) -+ AQ(T; M) + As,
where
1
Are(riM)=—5 > prlg™Ps,0) D Hi(s® —4q'0),
s2<4q™0 t| M
q te|s M/t squarefree
1
. _ _ r/2 . / nk—1 ’ /
A2(T7M) - 25r even SO((] ) Z mln(E 76/5) Z (Q(t)v (€ E/E ))’
e t|M

qT/2|(g’+g/g’) M/t squarefree

and
Ag = As(r; M) = dp—2 0 (¥).

Here and below the index s lies in Z, whereas t, /' € Z~y.
Hence

A o(r; M) + Ag(r; M) + Az ifr=0,1,
try M)—t(r—2;M) = A1 o(r; M) — Aro(r —2; M) — A1 (r — 2; M)
+(5T24A171(T—4;M)+A2(T';M)—A2(T—2;M) if r > 2.
To compute t"*V(r; M), we want to compute the quantities
(32) A M) = (o p)(d) Ax(rs M/d) = (s ) * As(rs ) (M),
d|M
where  is any index.
Proposition 3.1. With notation as above, we have
Ay o(r; M) + Aa(r; M) + A ifr=0,1,
(3.3) "V(r; M) =< Ajo(r; M) — Ay o(r — 2, M) — A4 (r — 2; M)
+ (57”24;1171(7" —4; M) + /12(7"; M) — 1212(7“ —2M) ifr>2.

In the remainder of this section, we compute the quantities A*(T;M ) in the main
situations of interest for us.

3.1. Aj. sums. Let ¢ € {0,1}.
13



Ao A H(—4q"0) H(—q"0)

reven, { Z3 mod 4 | —44 q/? n_40(q"/ )N (—40) 0
reven, {=3mod4 | —/ 2¢"/? n_e(2q"/2)W (—1) n_e(q"?)R' (—0)
rodd, ¢f £3 mod 4 | —dgl | ¢—D/2 N—1qe(q" V21! (—4qe) 0

rodd, ¢/ =3mod4 | —qf 2q(r_1)/2 n_qg(2q(r_1)/2)h’(—q€) T]_qg(q(r_l)/2)h/(—q€)

TABLE 1. Hurwitz class numbers by case

3.1.1. Computing Ay -(r; M) when 4¢ < ¢"T¢. Suppose 4¢ < ¢"t?. Then only the s = 0
term occurs in the outer sum for A; (r; M), and we have

Al M) =—3(-05 Y H(-Aq).

t|M
M/t squarefree

We assume (M, gl) = 1, so for t | M we have (t, —4¢"¢) = 1 unless t is even, in which
case (t,—4q"¢) = 2 or 4. Hence

(FLY H(—4q"0) it t odd,

(3.4) Hy(—4q"0) = { 2(5%) H(=q"t) if t =2 mod 4,
4(;?;E)H(—q7"€) if t = 0 mod 4.

In the following analysis, we will assume ¢ is squarefree. Write —4¢"¢ = A2Ag, where
Ay is a fundamental discriminant. We can rewrite H(—4¢"¢) and H(—¢"¢) in terms of
' (Ag) on a case-by-case basis as in Table 1. We will use this to calculate A; in cases.

The following computation will be useful. First, for an integer A, note that (é) |
is the multiplicative function given on nontrivial prime powers by

2) or m =
(2) b = {”(p) fofdorm =1,

0 if p| Aand m=1.

Consequently ka := (u* p) * ((é) x|p|) is the multiplicative function given on nontrivial
prime powers by
(&) -1 ifm=1,

P

—(%) if pt A and m = 2,

(3.5) ka(p™) =14 —1 if p| Aand m =2,
1 if p| A and m =3,
0 else.

When M is odd, this is simple: H;(—4¢"¢) will be given by the first case of (3.4). From

this we see
T

1

Arclri) = —5(-0F H (a0 (71

Vel 01 0da

Therefore .
Aye(r; M) = —5(—5)%*1 H(=4q"0) ki_gre (M odd).

14



For general M, we will evaluate 1211,5 by separating it into 3 sums as follows:

Are(riM) = ) (o p)(d)Ar e (r; M/d)

d|M
d odd
+ Y (ux) (A (r M)+ D (o p)(d)As(r; M/d)
d|M d|M
d=2 mod 4 d=4 mod 8

We will also separate the sum in A; . over ¢ according to vo(t). Write M = 2°M’ where
M’ is odd. Then

1 ko r r
Ave(rs M) = =5 (=027 Y (Hoe(—49"6) + Hoery(—440)),
t|M’
M’ /t squarefree

where we interpret Hy to be 0 if ¢t ¢ Z. Hence

2
A 1 k_ j r r
Are(riM) = (=02 DD (@A) Y (Haes(—44"0) + Hyeosory(—4470)) -
=0 i (M7 d)
M’ /dt squarefree

Rewriting (3.4) with index 2¢t for ¢ odd, we have

(F£5 H(—4q"¢) if e =0,
Hoey(—4q"0) = { 2(FL5) H(—q"0) ife—1,
ALY (5 T H(—g0) e > 2.

Applying this to the previous formula yields

. 1
(3.6)  Ay.(r;M)= —5(—5)%*1041(—(1% e)ki_gre(M'), M =2°M’ with M’ odd,
where
H(—4q"0) if e =0,
2H(—q"0) — H(—4¢"0) ifte=1,2,
ar(—q'te) = { (A(FLY) —6) H(—q"0) + H(—4q"0) if e =3,
2 —4(=4Y ) H(—q"0) if e = 4,
0 if e > 5.

\

3.1.2. Computing 1211,0(7"; M) when ¢ = 1. Assume ¢ = 1. Then Section 3.1.1 computes
Aq0(r; M) in all cases except when ¢" < 4, where there are terms with s # 0 in A; o(r;+).
Namely, when ¢" = 1 there are terms for s = 0,+1,+2, and when ¢" € {2,3,4} there are
terms for s = 0, +q".
Note that
k=1 kel —1 if k=0 mod 6,
pe(£1,1) = % =<1 if k=2mod6,
o 0 if k=4 mod 6;
pr(£2,1) =k — 1
15



—1 if k=0,6 mod 8

+1/2,1) = ’ 7

pk( \[7 ) {1 if Kk =2,4mod 8;

and

1 if k=2 6mod 12
+v3,1) = ’ ’

pr(+V/3,1) if k= 4 mod 12,

—2 if k=10 mod 12.

Suppose r = 0. Note that

A =5 Y ((CDEH(-) — 201, DH(-3) 206 - DH(0))
t|M
M/t squarefree

_ % tlZM (3(—1)’5 (;4) — Ap(1, 1)(23) + (k- 1)t> .
M/t squarefree

Hence
(37)  Avo(0:M) = oo (-5 _a(M) — dpy(1, 1) 5(M) + (k — Dioe (M)
where Koo = (% ) * (id * |p|), which is the multiplicative function given by
p—1 ifm=1,
(3.8) Koo(P™) =< p? —p—1 if m=2,

p"Bp—1)>%p+1) if m>3.

Case 2: ¢" =2
Suppose ¢ =2 and r = 1. Then

Aro(L,M) = Y <(_1)2Ht(_8) - (V2 1)Ht(_4)> :

t|M
M/t squarefree

By assumption t | M implies ¢ is odd, so
~ 1
(3.9) Aot M) = 5 (=15 r-a(M) = pr(vV2, Dioa (M)
Case 3: ¢" =3
Suppose ¢ = 3 and r = 1. Then

Aro(1; M) = Z <(_21)2Ht(_12) — pe(V3, 1)Ht(—3)> .

t| M
M/t squarefree

Hence by the same argument as above, we have

(3.10)  Apo(1; M) = <(‘;)2a1<3;e>n3<M'> - ;pkwﬁ,l)m(m) ,
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where M = 2¢M’ with M’ odd. We note that a;(—3;e) = %,—%,—2,2,0 for e = 0,
e=1,2,e=3,e=4and e > 5, respectively.
Case 4: ¢" =4

Suppose ¢ = 2 and r = 2. Then

ApM)= Y ((‘1)2Ht<—16> - (k- 1>Ht<o>>

t| M
M/t squarefree

1 k(=1
=5 > (9(—1)2 <t> + (k — 1)t> :
t|M
M/t squarefree

whence

(3.11) Aro(2: M) = % (9(-1) %K1 (M) + (k — Do (31))

3.1.3. Computing Ay 1(r; M) when £ = 1. Assume £ = 1. Then Section 3.1.1 computes
Aq1(r; M) except in the case that ¢ = 2 and r = 0, so suppose this. One sees

A11(0; M) = Z <(_;)2 Hy(—4) — (k- 1)Ht(0)>
M/t si;lluMarefree

1 k
S (e
t|M
M/t squarefree

This implies

MBS

(3.12) ALlahA4)=:£§(3C—D

3.2. Ay sums when ¢ = 1. Suppose £ = 1. Then
1
A2(T;M) = —=0r even 5qT\4 Z Q(t)

2
t|M
M/t squarefree

kot (M) + (k — 1),%0(1\4)) .

The sum on the right is in fact (Q * |u|)(M), which is a multiplicative function of M.
Consequently,
ag = () % (@ [ul)
is a multiplicative function, and one can check that it is given on (nontrivial) prime
powers by
if m is odd,
2 if m =2,
Tfﬁl(p —1)? if m >4 is even.
Hence, when ¢ =1,
1 .

< —saa(M) ifq¢" € {l,4} and M €[

0 else.
17



e |¢gq"=1mod4 q" =3 mod 4 q=

0 | H(-4q) | G- (D)H(-q) |H(-2"?)
12| —H(-4g) | (B -VHC) | —

3| H(-4q) | 3(E)-DH-q) | —
0 2 2
>5 0 0 —

TABLE 2. Computing ai(—q";e) by cases

3.3. A3 sums. Since A3(r; M) = dy—2 0(¢) is independent of r and M,

(g ) = Ag(r;-) = dp=o 0 (€) (% p % 1) = =2 7 ({) - .
In other words,

(3.14) Ay = As(r; M) = =y p(M)o (0).

4. DIMENSION FORMULAS

_ Let g,7, M,k be as in the previous section. Here we put together our calculations of
Ay(r; M) when ¢ =1 to compute

Ak(q", M) =t"Y(r; M) = dim S,?ew(qrM)ﬂ — dim SV (¢" M) ™9

Since one knows a formula for dim SV (¢"M) = dim Sp¥(¢" M )" + dim Sp¥ (¢" M) 9
([Mar05]), this will imply a formula for

1
dim S2¢% (¢" M)Fe = :|:§ (dim SV (¢"M) £ Ax(¢", M)) .
We will use the following explicit calculations of kA and «j.
Since (—q", M) = 1, we have

Kegr(M) = {HPQIIM (_(%)> Hp”M ((%qr) — 1) if M is cubefree,

0 if p3 | M for some p.

In particular k_g(M) = 0 if and only if (i) (_Tq?") =1 for some p || M; or (ii) v,(M) >3
for some p. Assuming neither (i) nor (i) hold, then r_g4r (M) = (—1)«2(=a"sM)(_2)w1 (M)
where wi (M) is the number of primes sharply dividing M and ws(n; M) is the number
of p? | M such that (%) =1.

We also tabulate the values of a1(—¢";e) by cases in Table 2. These calculations use
the fact that H(—4¢") = (3 — (51))H(—¢") when —¢" = 1 mod 4. In particular, one sees
that for ¢ odd, a1(—¢";e) = 0 if and only if (i) ¢" = 1 mod 4 and e > 4; (ii) ¢ = 3 mod 8,
r is odd and e > 5; or (iii) ¢ = 7 mod 8, r is odd and e > 0. We note that a;(—¢";e) <0
if (a) e # 1,2 or (b) e =3, r is odd, and ¢ = 7 mod 8. Otherwise a;(—¢";€) > 0.
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4.1. Dimensions for r = 1. First suppose r = 1. Then Ag(q, M) = Ay (r; M) + A3 by

(3.3).
When ¢ > 5,
Ax(q, M) = %(—1)%1(—% e)_o(M) + Spmapu(M), M = 2°M with M’ odd.
Otherwise
L (1% ka(M) = pr(V2, 1)1 (M) ) + Spape(M) if g =2,

Ar(g, M) = £
k(q, M) <(;)O¢1(—3; e)r_s(M') — %pk(\/i 1)5_3(M)> + Og=opu(M) if ¢ = 3.

Using these formulas, we can derive a precise elementary characterization of when the
Atkin—Lehner signs at ¢ are perfectly equidistributed.

Proposition 4.1. Let q be a prime, M > 1 be coprime to q. Write M = 2°M’, where
M’ is odd.

(1) Suppose q > 5 and either k > 4 or M is not squarefree. Then Ap(q, M) = 0 if
and only if (i) M’ is not cubefree; (ii) (%q) =1 for somep || M'; (iii) 16 | M and
g=1mod4; ()32 | M and ¢ = 3 mod 8; or (v) va(M) # 0,4 and ¢ = 7 mod 8.

(2) Suppose q > 5, k =2 and M is squarefree. Then Ag(q, M) =0 if and only if (i)
M =1 andq € {5,7,13,17}; or (ii) M =2 and q € {5,11,13,19,37,43,67,163}.

(8) Suppose ¢ = 2. We have Ap(2,M) = 0 if and only if (i) M is not cubefree; (ii)
[Leyar () is =1 if k = 0,2mod 8 and +1 if k = 4,6 mod 8; or (iii) k = 2 and
M =1 or M =3,5mod 8 is prime.

(4) Suppose ¢ = 3. If k > 4 or M is not squarefree, then Ay(3, M) = 0 if and only
if (i) M' is not cubefree; (ii) (_73) =1 for some p || M'; (i1i) 32 | M; (iv) M is
odd and k = 4,10 mod 12; or (v) 4 || M and k # 4,10 mod 12. If k =2 and M
is squarefree, then dim Sp°¥(3M)™# = dim SpeV(3M) ™3 if and only if M =1,2.

Proof. Case (1) follows immediately from the above vanishing conditions for a;(—g;e).

Case (2): Now suppose ¢ > 5, k = 2 and M is squarefree. Then Ag(q, M) = 0 if and
only if 2ai(—gq;e)k_g(M') = p(M).

For a discriminant A < —4, H(A) > 1. Also if A = A2A where Ay is a funda-
mental discriminant and A > 1, then H(A) > 2H(Ag). Thus the only integers A such
that H(A) = 1 are A = {-7,-8,—11,—-19, —43, —67,—163}. Similarly, there are 19
discriminants A < 0 with H(A) = 2 (the minimal one is A = —427).

If k_o(M') # 0, it equals (—2)*™"). Thus we can only have Ay (q, M) = 0 if (1) M’ =
and ay(—q;e) = £2, or (ii) M’ = p is prime and a1 (—q;e) = +1.

When M = 1, Ag(¢, M) = 0 if and only if H(—4q) = 2, i.e., if ¢ € {5,7,13,17}.
When M = 2, Ag(q, M) = 0 if and only if H(—4q) = 2H(—q) + 2, i.e., if and only
if ¢ € {5,11,13,19,37,43,67,163}. When M = p > 3, Ap(q, M) = 0 if and only if
H(—4q) = 1 and (%q) = —1, which never happens. When M = 2p, for a prime p > 3,
Ak(q, M) = 0 if and only if 2H(—q) = H(—4q) + 1, which also never happens. This
finishes case (2).

Case (3): Next suppose ¢ = 2, and k # 2 or M is not squarefree. Then t"*V(1; M) =0
if and only if k_o(M) = k_1(M) = 0 or (—=1)*/?pp(v/2,1) = [ L2 (123) The former
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never happens. The latter condition means HPQH M (%) is —1if Kk =0,2mod 8 and +1 if
k = 4,6 mod 8.

If g =2, k =2 and M is squarefree, then one needs k_o(M) + k_1 (M) = 2u(M),
which is true when M =1 or M is a prime p = 3,5 mod 8. This proves case (3).

Case (4): Finally suppose ¢ = 3. Then Ag(q, M) = ck_3(M') + 0p—opu(M), where ¢ =
%(—l)kﬂal(—?); e) — 3pk(V/3,1)k_3(2°). One checks that ¢ € {—1,0,1}, and ¢ = 0 if and
only if (i) e > 5; (ii) e =0 and k = 4,10 mod 12; or (iii) e = 2 and k£ =0, 2,6, 8 mod 12.

Hence if k # 2 or M is not squarefree, then Ag(g, M) = 0 if and only if one of (i)—(iii)

above holds; (iv) M’ is not cubefree; or (v) (773) =1 for some odd p || M.

Now suppose k = 2 and M is squarefree. Then ¢ = (—1)**!, and we see u(M) =
ck—_3(M'") if and only if M = 1,2. This completes case (4). O

When the Atkin—Lehner signs are not perfectly equidistributed, it is also easy to give
conditions for which Atkin—Lehner eigenspace is larger, and give bounds on the differences
of dimensions. For simplicity, we only explicitly do the former when ¢ > 5.

Proposition 4.2. Let ¢ > 5 be a prime, M > 1 be coprime to q, and e = va(M). Put
e=01if(1)e=0, (it) e=3 and ¢ =1 mod 4, or (iii) e >4 and g =3 mod 8. Let é =1
otherwise. Then

Ak(q, M) >0 if%—}-wl(M)+w2(—q;M)+éEOm0d 2,
Ag(q, M) <0 else.

k
2

Proof. The sign of Ag(¢q, M) agrees with the sign of (—1)2a;(—g;e)rk_q(M’). This is
immediate from the above expression for Ag (g, M) unless k = 2 and M is squarefree. In
that situation it follows as |a1(—g;e)r—_q(M')] > |u(M)| = 1. O

In particular, the above two propositions contain the r = 1 case of Theorem 1.1.

4.2. Dimensions for r > 3 odd. Suppose r > 3 is odd. Then
Ak(qr, M) = AL()(T; M) — ALO(T — 2; M) — /1171(7" — 2; M) + (57»25141,1(7‘ — 4; M)

First assume ¢"~2 > 4, i.e., ¢ > 3 or r > 5. Then

Ag(q", M) = %(—1)g (oq(—qr; e)hi_qr (M) — 201 (—q" % e)ki_gr—2(M') + 5T25a1(—qr_4; €)K _gr—i (M'))
= %(—1)§m,q(M') (1(—=q";e) — 201 (—q" "% €) 4 p>s5a1(—q" 4 e)).

Recall k_q(M') = 0 if and only if M’ is not cubefree or (%q) =1 for some p || M'.
Consider the factor 8 = a1(—¢";e) — 2a1(—q" "% €) + 6r>51(—¢" % €). According to

Table 2, we can write
N=¢ (H(Aoqr_l) — 2H(A0qr_3) + 5T25H(A0qr_5)) ,

where Ag = —4qifg=1,2 mod 4 and Ay = —qif ¢ = 3 mod 4. Here ¢; € {0,+1,+2,4, —6}
according to the cases in Table 2 (and (_7‘1) when ¢ = 3 mod 4). In particular, ¢; = 0 if
and only if (a) e > 5, (b) e=4 and ¢ =1 mod 4, or (c) e = 1,2,3 and ¢ = 7 mod 8.
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Moreover, by Table 1 and (2.2), we see that’
)+ 8yzsnan(a’™)) (Ao)
=0 (a(qrgl) — 20‘((]%) + 5r250(q%)) R (Ao)
=c (qrgl - q%> h'(Ao).

In particular, one deduces that X = 0 if and only if ¢; = 0. This proves the following.

r—1 r—3

27) — 2np,(q 2

N=c (mo(q

Proposition 4.3. Let q be a prime, r > 3 odd, M > 1 be coprime to q, and write
M =2°M’, where M’ is odd. Assume q" # 8,27. Then Ar(q", M) = 0 if and only if (i)
M’ is not cubefree; (ii) (%q) =1 for somep || M'; (iii) e > 5; (iv) e =4 and ¢ = 1 mod 4;
or (v)e=1,2,3 and ¢ = 7 mod 8.

Further, when Ay(q", M) # 0, its sign is the sign of (—1)F/2ay(—q"; €)k_gr (M).

This completes the proof of Theorem 1.1.

Explicit equidistribution criteria for ¢" = 8 and ¢" = 27 break up into more cases
based on the weight and, in the case of ¢" = 8, a more delicate relation among quadratic
residue symbols. We merely write down t"°V(r; M) in these cases:

When ¢" = 8, we have

Ax(8, M) = o (=15 ka(M) + pr(V2, D)1 (M) )

N | —

When ¢" = 27, we have

IMES

Azt b = (51

5 (-1 (1(-2750)  201(=3:6)) + 3u(VE D-a(2) ) na(A)

4.3. Dimensions for r = 2. Suppose r = 2. Then
Ap(g?, M) = Ay o(2; M) — Ay o(0; M) — Ay 1(0; M) + Ag(2; M) — Ay (0; M).

There does not appear to be a clean characterization of when the Atkin—Lehner sign at ¢
is perfectly equidistributed for general ¢, M, k, but we can give asymptotics for "V (2; M)
in various parameters. Let

1 ife=0,3,
bre =14 —1 ife=1,2,
0 if e > 4.

Proposition 4.4. (1) Fix q. Let k, M denote varying integers such that k > 2 is
even and M > 1 is coprime to q. As k+ M — oo, we have

1
A M) ~ (1~ K)ae (M),
so in particular Ay(q?, M) — —oo.

‘In the published version, the factor of 2 mistakenly appeared inside the arguments of na, and o.
This final simplified expression for N did not appear in the published version.
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(2) Fiz k,M. Suppose M or % s a cubefree integer such that p Z 1 mod 4 for each

p || M. Then as ¢ — oo along a sequence of primes not dividing M, we have
1
Ax(q?*, M) ~ Z(_l)k/QbZ,e/’ifl(M/)Q-

In particular, for large q, the sign of Ay(q?, M) is (_1)§+b27e+w1(M’)+w2(—1;M’)'
The first part of this proposition coincides with Proposition 1.3.

Proof. Recall that Ag(r; M) = 0 unless M is a square and ¢" € {1,4}, in which case it
is —3aa(M). Note that 0 < ap(M) < v'M. This combined with our analysis below will
imply that the A, terms in Ay (¢, M) will not contribute to the main asymptotics in

either case.

Case (1): Note that for an integer A, we have |ka(M)| < 291 (M). Thus the sum
A1(0; M) + A1 1(0; M) equals 2?2:2 (k — 1)koo(M) plus terms that (in absolute value)
are O(2«1(M)). The other terms in Ay(¢?, M) are also O(21 (M) except that when
q" = 4 there is also a koo (M) term that cancels out half of the ko (M) contribution
from Ay o(0; M)+ Ay 1(0; M). Since koo(M) > [1,a(p—1), the asymptotic in (1) follows.

Case (2): When ¢ # 2, we have

Ar0(2 M) = A (0: M) = i(—l)k/ﬂbze(q 1o (j))m(M').

The hypothesis guarantees that this is nonzero and grows like the asserted multiple of ¢,

whereas all other terms in Ay (q?, M) are bounded independent of g. ]
4.4. Dimensions for r > 4 even. Now suppose r > 4 is even. Then

- ~ ~ - Ogr=
Ak(g" M) = Ay (1 M) = Ay o(r—2; M) — Ay 3 (r—2; M)+ Ay 1 (r— 4 M)+ L ay(M).

When ¢" = 16, we get
1 k
Ak(16,M) = 5 ((=1)3k_1(M) + as(M) ),
and the ag(M) term dominates asymptotically if M — oo along a sequence of squares.
If M is not a square, then ao(M) = 0 so Ag(16, M) = 0 if and only if M is not cubefree
or if p =1 mod 4 for some p || M.
Now assume ¢" # 16. Then

where
N=a;(—q";e) — 2a1(—q7"*2; e)+ al(—qr%; e).
From Tables 1 and 2, we compute

r—4

23 =2
r—4 .
R — %QT(‘]—l)(q_(%)) if g#2 and e =0, 3,
- r—4 .
34T (a-Dg— () ifg#2ande=1.2,

0 if e > 4.

This gives an explicit formula for t**V(r; M), which proves Theorem 1.2.
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5. CORRELATION OF FOURIER COEFFICIENTS AND LOCAL SIGNS

Now we will investigate the correlation of Fourier coefficients with Atkin—Lehner signs.
For simplicity, we will only work with Atkin-Lehner operators at primes ¢ that sharply
divide the level. On the other hand, we will consider not just Atkin-Lehner operators
W, at a single prime ¢, but Wg =[] ) W, for some squarefree @ > 1.

Let @Q,¢, M be pairwise coprime positive integers with ) squarefree. Let & > 2 be
even. From [SZ88|, we have

trs, (Qan TeWq = Ar0(1; M) + dg=142(0; M) + A3

where A, is defined as in Section 3 with @ in place of ¢. In particular, replacing s with
2 in the definition of Alya(r; M) we have

Q
Aro(LM) = — Z pe(sV/Q.0) Y Hi(s°Q7 - 4Q0).

52 <4 t|M
@ M/t squarefree

We also have
(5.1) trSEeW(QM) TgWQ = ;1170(1; M) + 5Q:1/~12(0; M) + 1213,
where as before A, (r; M) = > aiv (px 1) (d) As(r; M/d). Here As is given by (3.14).

5.1. Traces for small ¢. The traces of T;Wg are simpler when £ is small relative to Q.
In particular, suppose that 4¢ < @ so that only the s = 0 term contributes to A; o(1; M).
The analysis in Section 3.1.1 also applies if we replace ¢ by @), and one has that

1
(52) trSEeW(QM) TZWQ — _5(_5)
We have the following consequences for ) = ¢ and ¢ both prime. As before, write

M = 2¢M' with M’ odd.

MES

71041(—@5; e)fi_Qg(M/) + 5k:2,u(M)a(€).

Proposition 5.1. Assume ¢ < % is prime. Suppose either M' is not cubefree or 32 | M.
Then the trace of Ty on S}gew(qM)i‘l is independent of the sign =4 for £ < §. Equivalently,
since Ag(q, M) =0, the average of ay(f) over newforms in Sy (gM )T is equal to that
for SR (qM)~e for primes £ < 4

For simplicity, now assume M is cubefree. (Note that trgnew(gas) TeWq = dp=op(M)o (€)
if £ < 4 and M’ is not cubefree.) Then

Kqe(M') = H(<_pq€) - I] <_pqg>

plM’ p?||M’
and
H(—4q0) ife=0,
o (—ql;e) = { —H(—4ql) ife=1,2 and ¢/ =1 mod 4,

((_TQZ) - 1) H(—4qf) ife=1,2and ¢/ =3 mod 4,

which implies the following.
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Proposition 5.2. Suppose M is cubefree and £ < % is prime. If either (i) (77(12) =1 for
some p || M or (ii) e = 1,2 and ¢f = 7 mod 8, then

trgpew (gar) TeWq = Op=ap(M) (€ + 1).

Otherwise
trgnew (gar) TeWq = cre(gl)(—2) M0 (g3 11 <_pq€>H(—4q5) + Op=2 (M) (£ +1),
P2 M’
where
1 ife=0,
cre(gl) =4 -1 ife=1,2 and ¢f = 1 mod 4,

-2 ife=1,2 and ¢/ =1 mod 8.

Now we compare the sign of this trgnew( ) TrWy (or whether it is 0 or not) with
the sign of Ag(g, M). For simplicity, assume k& > 4 or M is not squarefree so that the
Sp—op(M)o(¢) term vanishes. Then from Proposition 4.1, we have Ag(q, M) = 0 if and
only if (i) (%q) =1 for some p || M’ or (ii) M is even and ¢ = 7 mod 8.

Corollary 5.3. Suppose M is cubefree, £ < § is prime, and either k > 4 or M is not
squarefree. If the quantities Ag(q, M) # 0 and trgnew (oar) TeWq % 0 are both nonzero,
then their ratio has sign HPZHM’ (ﬁ). In particular, their signs are the same if M’ is
squarefree.

This corollary implies the first part of Theorem 1.6.
From [MS10, Proposition 14], we have

’trsgew ) Tz’ < gle-1)/2 (8634w(qM) " 53/2) .

In particular, for fixed ¢, k, M, we see that trgnew (gar) Ty is bounded independent of q.
Since

1
trsgew(qM):tq Tg = 5 (trszew(qM) Tqu + trsﬁew(qM) Tg) s

for g large H(—4qf) dominates trgnew (gar) To- Thus the sign of trgnew (garyta Ty will be +1
times the sign of tr Smew (g M) TyW, for large g such that the latter trace is nonzero.
This proves the second part of Theorem 1.6.

Remark 5.4. One could also prove analogous statements for 7;Wg. The restriction to
() = ¢ was simply because our goal here was to compare T;W, with A(q, M).

5.2. Traces for general ¢ with M squarefree. Now, assuming M is squarefree, we
give a formula for trgnew Q) T;Wg which is amenable to computation.

Since we restrict to squarefree levels, we specify certain multiplicative functions &x
below only on squarefree integers. To apply standard Dirichlet convolution, we may
view these as multiplicative functions on N which are, for instance, 0 on non-squarefree
numbers.

For fixed A and squarefree ¢, it is straightforward to check that

Hy(A) = (1 H (D),
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where €2 is a multiplicative function satisfying
EAlp) = {(%)(A/p2) Tf P oA,
P—HAY if p* | A.
Then for squarefree M,
Y Hi(A) = (1xE)(M)- H(A) = EA(M)H (D),
t| M

where £X is a multiplicative function such that &4 (p) = 1 + &% (p).
Write

Aro(L; M) = —= Z pe(sv/a@,0)B1(M, q(s°q — 40)),

52<4£
q

Bi(M;A) = Z(—Q)w(d) Z Hy(A

d|M tM/d

where

The above shows that

Bi(M,A) = ((p* p) * EA)(M)H(A) = Ea(M)H(A),

where €a is a multiplicative function satisfying &a(p) = 52 (p) — 1. Using (2.2), we can

explicitly write
(;) -1 if p2 1 A,

(5:3) éalp) = (r-1)((5)-1 .
(pe+l 1) ( m )( e 1) lf p2 ‘ A? 26 = UP(A/AO)7

where A is the negative fundamental discriminant dividing A.
When @ =1 and ¢ prime, we have

A5(0;N) = = 37(Q(1), £ — 1) = —a(N).

tIN

This yields 3
A2 (0;N) = =dn=1.

In summary, we have the following.

Proposition 5.5. Let Q, M, ¢ be pairwise coprime integers such N = QM 1is squarefree.
If Q =1, further assume that £ is prime. Then

Z Uk—Q(;\/?)SSQQQ4Q€(M)H(52Q2 —4Q¢)

S2S%

k_q

trSEeW(QM) TgWQ = —

—ON=1 + 5k:2u(M)J(€).

Remark 5.6. When Q = 1, this is the squarefree case of the trace formula for Ty in
[MS10]. When M = 1, this is the trace formula used in [Zub]. Assaf [Ass] also gives a
trace formula for T,;Wg on the newspace (without a squarefree level assumption) which
involves multiple summations. The point of Proposition 5.5 is to give the trace as an
explicit linear combination of a minimal collection of class numbers.
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6. MURMURATIONS

6.1. Analysis for Type I. Let us now investigate murmurations for arithmetically com-
patible sequences (N, Q) = {(N,Q)} of Type 1. For simplicity, we will assume N = QM
is squarefree where M is fixed and @) ranges over squarefree numbers coprime to M. Fix
k and let F be the family of weight k& newforms of a squarefree level N € N/. Then
vM

Q A — 1-£ !
(6.1) AZ(,X;8) = me 2 i > i trgnevQur) TeWa,
TSQRSBE;

where the prime on the sum means () is restricted to squarefree numbers coprime to £M.
Here § > 1 is fixed.

We want to consider the limit of these averages as ¢, X — oo such that % — x for some
x € [0,00) by substituting the trace formula from Proposition 5.5 into (6.1). Specifically,
Conjecture 1.8 asserts that the limit exists. Note that one only gets s-terms appearing
for s? < % < % ~ 4Mz. Consequently, we will only see a bounded number of s-terms.

As #F (X, 3X) grows like a multiple of X? (see [Zub, Section 3.4] for a precise estimate),
the dny—1 term will contribute nothing asymptotically, and it is easy to see that the dx—o
term will asymptotically contribute a constant as % — .

Hence it suffices to consider the finitely many s-terms from Proposition 5.5. The
contribution from each of these terms is determined in [Zub] in when M = 1. Here
we content ourselves with the more modest goal of analyzing the contribution from the
s = 0 term, with the expectation that the work in [Zub] can be similarly modified to
prove Conjecture 1.8 in this setting (as well as the variant where Q is restricted to NiI).
The s = 0 contribution to (6.1) is

(12 VM
2 #F(XBX)

S Cage(M)YH(-4Q0).

2<Q<BL

(6.2)

Since & _4ge(M) = € _400(22M) [Toaq oM ((_TQZ) - 1), this value only depends on Q¢ mod
SM.

Lemma 6.1. Fiz integers a,m > 1 such that (a,m) is squarefree. Then there exists
c > 0 such that

S H(-4Q0) = eXVIX + O(X 10 4 Vilog £),
1<Q<X
Q¢=a mod m

uniformly in £, X .

Proof. We may assume Q¢ > 3. Then H(—4Q¢) = h(—4Q¢) + h(—Q¥¢). Thus the
lemma amounts to estimating class number sums in congruence classes with a squarefree
restriction on (). This is similar to classical class number averages, but now with a
congruence condition. Lavrik [Lav71] has already determined class number moments
over arithmetic progressions. The sums of h(—4Q¥¢) and h(—Q¥¢) are similar; we just
explain the proof for h(—Q¥).

For a discriminant —D < —4, we have h(—D) = @L(l,x_p), where x_p(n) = (ﬁ)

n

We have L(1,x_p) = > o7 X*%(n) +0(v/Dlog(D)/T) by Polya-Vinogradov and partial
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summation. Then

ST L1, x_) Z Z 1+ ) = Z X—_qe(n) + O(v/1/ X log(£X))

Q<X n2<X Q<X néX Q<X

where the sums over () are restricted to squarefree ) coprime to ¢ such that Q¢ =
a mod m and Q¢ = 1 mod 4.

The first double sum on the right is ¢; X + O(v/X) for some fixed ¢; > 0. For the
(=) 32 (9) MQ(Q)‘. By [Zub, Lemma 6.7),

this is O(Q%/5+ten1/5+¢), which implies the second sum above is O(X*/5+¢). This suffices
for the corresponding class number sum estimate. (Il

second sum, note that ‘EZKX X,Qg(n)’ =

By the lemma and remarks above, the s = 0 contribution to (6.2) is asymptotic to
a finite linear combination of the form ;.7 s5p7 civ/¢/X. This proves Theorem 1.9,

as the hypothesis z < ﬁ — £ means that only the s = 0 term from the trace formula
contributes to (6.1) asymptotically.

6.2. Analysis for Type II. Next suppose (N, Q) = {(IV, @)} is of Type II with @ fixed
and squarefree, and N ranges over all squarefree numbers of the form N = QM. As
before, fix k and let F be the family of weight k newforms of some level N € N/. Then

1 _k /
(63) AJQ_-(K, X, 5) - ng 2 Z V Mtrsgew(QM) TgWQ,
’ F<M<p

where the prime on the sum means M is restricted to squarefree numbers coprime to Q).
Now we will analyze an analogue of (6.3) without weighting by the factor v M, and
this will motivate its inclusion.

Lemma 6.2. Let Q > 1 be squarefree. As £, X — oo with £ prime coprime @, we have

(64) f% Z/ trS,SeW(QM) TgWQ < €g+5X%+€ + 5k:2 O(ZX),
X<M<BX

where the sum is restricted to squarefree M such that (M,Q¢) = 1.

Proof. Note that the dx—2 term for trgnew(qar) W@y contributes (£41)o(X) to the above
sum of traces of T;Wy, using the fact the Mertens function M(z) =, . p(n) is o(X).
The dny—1 term in trgnewQar) WoTi can be ignored.

For a given s such that s? < % the contribution to the above sum is

Q7
_*Uk 2(2\/ Z Ea(M
X<M<,8X
where A = s2Q — 4Q¢. Note that Uk_g(g\/g) is absolutely bounded since Uy_5 is
a polynomial and the argument is absolutely bounded. Since |A| = O(¢), we have
H(A) = O(V{llog?), and by [Zub, Lemma 6.7] the sum over M is O(X3/5+e¢l/5+),
Summing up the O(v/?) terms now gives the asserted bound. ]
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Corollary 6.3. Let F be the family of weight k newforms with squarefree level, and fix
6 >1. As £, X — oo such that % — x for some x € [0,00), the unweighted averages
satisfy

AT, X5 8) + AZ(4, X;8) = 0.

We actually expect more cancellation than in Lemma 6.2. If £, X — oo such that
% — x, then left hand side of (6.4) divided by the number of weight k& newforms in that
range appears to grow roughly like %. This suggests the VM = /N/Q weighting in
(6.3).

6.3. Analysis for Atkin—Lehner eigenspaces. Now fix m < r, primes p1 < -+ < pm,
and let F, N be as in Conjecture 1.10. Say N = p;...p, € N with p; < --- < p,, and
let £ = (e1,...,&,) € £1". We view ¢ as the multiplicative function on divisors N such
that e(p;) = ;. Then

trszew(N)s T, =2"" Z E(Q) trsgew(N) T,Wq.
QIN
(See [Marl18a, Proposition 3.2] for the case of ¢ = 1, but the proof works for general ¢.)
For asubset I C {1,...,r}, denote by Qr = [],.; pi the divisor of some N € N, and let
Qr the sequence of Qr’s as N ranges over N. Since dim Sp°V(N)® ~ 27" dim SV (V) +
O(1) by [Mar18a, Corollary 3.4], one can approximate the averages for the Atkin—Lehner
eigenspace

/
AF(L, X;8) = 27" Z E(QI)CI,X,gA%(E,X;B), where ¢ x g = Z 5Ne/\/\/%-

Ic{1,...,r} X<N<BX

Assuming Conjecture 1.8, the terms on the right should only contribute in a limit
if crx /A 0 as X — oo. Hence we expect a relation between the murmurations in
Conjectures 1.8 and 1.10 of the form

(6.5) M (w; 8) = 3 &0, Mz (3 B)-
{1,...m}CIC{1,..,r}

This justifies the expectations in Remark 1.11(2).

6.4. Levels divisible by ¢. Here we indicate what happens if one includes levels ¢ | N
(as is done in [Zub]) in murmurations sums. For simplicity, let us consider the averages
A;—(f, X; ) introduced first in Section 1.3. For a form f with level N divisible by ¢, we
have |/*=/2a,(f)| < 1. Hence

> 0 Ha = Y M) o),

FE(X,6X) FE(X,6X)0)

Assuming § — x, the error term in this expression is O(1) and will go to 0 upon dividing
by #FE(X, X)) or #FE(X,X). Since #F (X, X)) ~ (1 — H)#FE(X, BX), we
see there is no asymptotic difference between working with averages over F*(X, X))
or FX(X, BX).
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7. QUADRATIC TWISTS

Let f € Sip(N), and x be a quadratic Dirichlet character of conductor M. From
[AL78, Proposition 3.1], one knows that f ® x € Si(lem(NN, M?)). In particular, twisting
by x acts on eigenforms in Sk(N) if M? | N. Note that if v,(N) > 2v,(M) for all p | M,
then twisting by x acts on newforms in Si(N): if f € Sk(N) is a newform, and g = f® x
had smaller level N’, then necessarily v,(N') < v,(N) for some p | M, but then f = g®x
would have level which is strictly smaller than N at p.

Here we will examine when twisting by a quadratic character produces a bijection
between newforms in Sp¥(N)*e and newforms in SpeV(N)~¢. For simplicity we will
restrict to the case that v,(IN) > 2v,(M) for all p | M, which is generically necessary. (If
this is not satisfied, there will be some non-minimal forms where twisting by x strictly
lowers the level, except in the small parameter cases where all relevant lower level spaces
are 0-dimensional.)

Say 7, is the irreducible admissible representation of PGL2(Qq) associated to a new-
form f € Sk(¢"M), where (M,q) =1 and r > 1. Then r is the conductor of ;. If 7, is
supercuspidal, there are 3 distinct possibilities: (i) it is dihedrally induced from a ramified
quadratic extension E;/Qy; (ii) it is dihedrally induced from the unramified quadratic
extension of Q; or (iii) it is not dihedrally induced. We respectively call these cases: (i)
ramified supercuspidal; (ii) unramified supercuspidal; and (iii) exceptional supercuspidal.
The exceptional case only happens when g = 2.

If r = 1, then 7, is an unramified twist of the Steinberg representation. If r = 2, then 7,
can be a ramified principal series, ramified twist of Steinberg, or unramified supercuspidal.
If » > 3 is odd, then 7, is ramified supercuspidal or exceptional supercuspidal (the latter
only happens when ¢ =2 and r = 3,7). If » > 4 is even, either 7, is a ramified principal
series representation, unramified supercuspidal, or exceptional supercuspidal (the latter
only occurs when ¢ = 2 and r = 4, 6).

For a quadratic Dirichlet character x, denote by k(mg,x) the change in the W,-
eigenvalue of f upon twisting by x, i.e., the ratio of the W-eigenvalues of f and f ® x.
This only depends on 7g, and the calculation of k(my,x) is given in [Pacl3] (see also
[AL70,AL78] for a more classical perspective in special cases).

Since any quadratic x is a product of quadratic characters of prime-power conductor,
we may reduce to the case of twisting by characters ramified at a single finite prime
p. For an odd prime p, let x, denote the quadratic character of conductor p, which

corresponds to the quadratic extension Q(y/p*) where p* = (771) p. That is, xp(n) = (ﬁ).

n
For j € {—1,+2}, let x; be the quadratic character associated to Q(/7). Then x_; has
conductor 4 and x+9 has conductor 8.

7.1. Twisting at ¢. First we state x(mg, xq) When ¢ is odd. Since we are interested in
the case where twisting by x, acts on the newforms in Si(¢"M), we may assume the
conductor of 7, is r > 3.

If 7, is a ramified principal series, then k(mg, xq) = (_71)
-1

If 7y is an unramified supercuspidal (so r is even), then r(my, xq) = —(7).

If m, is a ramified supercuspidal (so r is odd) induced from E,;/Q,, then x(mq, xq) =

+1), where the sign is +1 if B, = Q,(1/¢*) and —1 if E, = Q,(v/—¢%).
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Thus for any ¢ odd and r > 3, twisting by x, never flips the Atkin-Lehner sign of
every kind of representation m, of conductor r. In particular, twisting by x, does not
force Ap(q", M) = 0 (at least assuming that dim SpV(¢"M) is sufficiently large so all
possible local representations occur).

When ¢ = 2, the situation is similar. If x € {x_1, x+2}, and r > 5, one may see from
the calculations of k(mg, x) in [Pacl3, Theorem 4.2] that twisting by x will not flip the
Atkin-Lehner sign of each kind of representation PGL(Q3) of conductor r.

7.2. Twisting away from ¢. Next we consider twisting by a quadratic character ram-
ified only at a prime p # q.
First suppose p is odd and p # ¢q. Then k(mg, xp) = (%)r for any m, of conductor r.
Next let x € {x—1,x+2}. Then for ¢ odd, we have r(my, x) = x(¢)" for any m,
of conductor r. In particular, if r is odd then x(my,x—1) = —1 if ¢ = 3 mod 4 and
k(mg, X—1) = —1 if ¢ = 5 mod 8.

Proposition 7.1. Suppose N = ¢"M, with r odd, (¢, M) =1, and one of the following
holds:

(1) there exists an odd p such that p> | N and (%) =-1;

(2) 25| N and g = 3 mod 4;

(3) 2" | N and ¢ = 5 mod 8.
Then f +— f® x defines a bijection of newforms in Sp(N)Te with S (N)~9, where
we can take x = xp in case (1), x = x—1 in case (2), x = X+2 in case (3).

Note that when the hypotheses of this proposition hold, one also gets that tr Spew () T W, =
0 for £ such that x(¢) = 1. Moreover, since f = f® x mod 2, each newform in Sp(N)Ta

is congruent mod 2 to a newform in S;°V(N)~¢, and vice versa.

APPENDIX A. ERRATA FOR “RANK BIAS FOR ELLIPTIC CURVES MOD p” BY KIMBALL
MARTIN AND THOMAS PHARIS

Here we correct a sign error when £ = 0 mod 4 in Section 2 of the published article
[MP22]. This has no effect on the rest of the paper.
The following corrections should be made to [MP22]:

(1) p. 710, bottom (Section 1A): the phrase “however the signs for £ = 0 mod 4 are
opposite to those for kK = 2 mod 4” should be removed.
(2) p. 717: The conclusion of Proposition 2.2 should read

k
2

1 _
tTSEeW(N)i Tn F 4nk?2H(4nN)‘ < (2w(N) (4”) + (Sk;,g) Ul(n).

(3) p. 717, proof of Proposition 2.2: p(0,n) = (—n)*=2/2 not n*k=2/2 5o (2-2)
should read

1 k=2
(A.1) trg, vy TnWn = —5(—71) 2 H(4nN) + 0p201(n).
Corresponding sign changes should be made throughout of proofs of Proposition

2.2 and Corollary 2.3.
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(4) p. 717: The conclusion of Proposition 2.2 should read

1 _

(5) p. 718: The conclusion of Corollary 2.3 should read

NZ7¢ < £ trgpew(y)e Ty < N2 log N

(6) p. 718, bottom: the phrase “when k& = 2 mod 4, and approximately like VN

[Ass]
[AL70]
[ALT78]

[BP]

[HLOP]
[Lav71]
[Mar05]
[Mar18a]
[Mar18b)]
[Mar23]
[MP22]

[MS10]

[Pacl3]
[Sage]
[$Z88]

[Zub)]

when £ = 0 mod 4” should be removed.
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