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Abstract. Stark–Heegner points, also known as Darmon points, were introduced by H.
Darmon in [Dar01] as certain local points on rational elliptic curves, conjecturally defined
over abelian extensions of real quadratic fields. The rationality conjecture for these points is
only known in the unramified case, namely, when these points are specializations of global
points defined over the strict Hilbert class field H+

F of the real quadratic field F and twisted
by (unramified) quadratic characters of Gal(H+

c /F ). We extend these results to the situation
of ramified quadratic characters; more precisely, we show that Darmon points of conductor
c ≥ 1 twisted by quadratic characters of G+

c = Gal(H+
c /F ), where H+

c is the strict ring class
field of F of conductor c, come from rational points on the elliptic curve defined over H+

c .
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1. Introduction

The theory of Stark–Heegner points, also known as Darmon points, began with the founda-
tional paper by H. Darmon [Dar01] in 2001. In this work, Darmon proposed a construction
of local points on rational elliptic curves, the Stark–Heegner points, which, under appropriate
arithmetic conditions, he conjectured to be global points defined over strict ring class fields
of real quadratic fields, which are non-torsion when the central critical value of the first de-
rivative of the complex L-function of the elliptic curve over the real quadratic field does not
vanish. Note that the absence of a theory of complex multiplication in the real quadratic case,
available in the imaginary quadratic case, makes the construction of global points on elliptic
curves over real quadratic fields and their abelian extensions a rather challenging problem.
The idea of Darmon was to define locally a family of candidates for their points, and conjec-
ture that these come from global points. Following [Dar01], many authors proposed similar
constructions in different situations, including the cases of modular and Shimura curves, and
the higher weight analogue of Stark–Heegner, or Darmon, cycles; with no attempt to be com-
plete, see for instance [Das05], [Gre09], [LRV12], [LRV13], [Tri06], [GS16], [RS12], [GMcS15],
[GM15b], [GM15a], [GM14], and [GM13].

The arithmetic setting of the original construction in [Dar01] is the following. Fix a rational
elliptic curve E of conductor N = Mp, with p - M an odd prime number and M ≥ 1 and
integer. Fix also a real quadratic field F satisfying the following Stark–Heegner assumption:
all primes ` | M are split in F , while p is inert in F . Under these assumptions, the central
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critical value L(E/F, 1) of the complex L-function of E over F vanishes. Darmon points are
local points Pc for E defined of finite extension of Fp, the completion of F at the unique
prime above p; their definition and the main properties are recalled in Section 2 below. The
definition of these points depends on the choice of an auxiliary integer c ≥ 1, called the
conductor of a Darmon point Pc. The rationality conjecture predicts that these points Pc are
localizations of global points Pc which are defined over the strict ring class field H+

c of F of
conductor c.

Only partial results are known toward the rationality conjectures for Darmon points, or
more generally cycles. The first result on the rationality of Darmon points is due to Bertolini
and Darmon in the paper [BD09], where they show that a certain linear combination of these
points with coefficients given by values of genus characters of the real quadratic field F comes
from a global point defined over the Hilbert class field of F . The main idea behind the proof of
these results is to use a factorization formula for p-adic L-functions to compare the localization
of Heegner points and Darmon points. More precisely, the first step of the proof consists in
relating Darmon points to the p-adic L-function interpolating central critical values of the
complex L-functions over F attached to the arithmetic specializations of the Hida family
passing through the modular form attached to E. The second step consists in expressing this
p-adic L-function in terms of a product of two Mazur–Kitagawa p-adic L-functions, which are
known to be related to Heegner points by the main result of [BD07]. A similar strategy has
been adopted by [GSS16], [Sev12] [LV14], [LV16] obtaining similar results.

All known results in the direction of the conjectures in [Dar01] involve linear combination
of Darmon points twisted by genus characters, which are quadratic unramified characters of
Gal(H+

F /F ), where H+
F is the (strict) Hilbert class field of F . The goal of this paper is to

prove a similar rationality result for more general quadratic characters, namely, quadratic
characters of ring class fields of F , so we allow for ramification. In the remaining part of the
introduction we briefly state our main result and the main differences with the case of genus
characters treated up to now.

Let E/Q be an elliptic curve, and denote by N its conductor. Let F/Q be a real quadratic

field F = Q(
√
D) of discriminant D = DF > 0, prime to N . We assume one has a factorization

N = Mp with p -M , such that all primes ` |M are split in F and p is inert in F .
Fix an integer c prime to D ·N and a quadratic character

χ : G+
c = Gal(H+

c /F ) −→ {±1},
where, as above, H+

c denotes the strict class field of F of conductor c. Let Oc be the order
in F of conductor c. Recall that G+

c is isomorphic to the group of strict equivalence classes
of projective O+

c -modules, which we denote Pic+(Oc), where two such modules are strictly
equivalent if they are the same up to an element of F of positive norm. We assume that χ is
primitive, meaning that it does not factor through any G+

f with f a proper divisor of c.

Fix embeddings F ↪→ Q̄ and Q̄ ↪→ Q̄p throughout. Let Pc ∈ E(Fp) be a Darmon point of
conductor c (see Section 2 below for the precise definition of these points) where, as above, Fp
is the completion of F at the unique prime of F above p. It follows from their construction that
Darmon points of conductor c are in bijection with equivalence classes of quadratic forms of
discriminant Dc2, and this can be used to define a Galois action Pc 7→ P σc on Darmon points,
where Pc is a fixed Darmon point of conductor c and σ ∈ G+

c . We may then form the point

(1) Pχ =
∑
σ∈G+

c

χ−1(σ)P σc

which lives in E(Fp). Finally, let logE : E(Cp) → Cp denote the formal group logarithm of
E. Note that, since p is inert in F , it splits completely in H+

c , and therefore for any point
Q ∈ E(H+

c ) the localization of Q at any of the primes in H+
c dividing p lives in E(Fp). Our

main result is the following:
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Theorem 1.1. Assume that c is is odd and coprime to DN . Let χ be a primitive quadratic
character of G+

c . Then there exists a point Pχ in E(H+
c ) and a rational number n ∈ Q× such

that

logE(Pχ) = n · logE(Pχ).

Moreover, the point Pχ is of infinite order if and only if L′(E/F, χ, 1) 6= 0.

If c = 1, this is essentially the main result of [BD09]. To be more precise, the work [BD09]
needed to assume E had two primes of multiplicative reduction because of this assumption
in [BD07]. However, this assumption has been removed by very recent work of Mok [Mok],
which we also apply here.

The proof in the general case follows a similar line to that in [BD09]. However, some
modifications are in order. The first difference is that the genus theory of non-maximal orders
is more complicated than the usual genus theory, and the arguments need to be adapted
accordingly. More importantly, one of the main ingredients in the proof of the rationality
result in [BD09] is a formula of Popa [Pop06] for the central critical value of the L-function
over F of the specializations at arithmetic points of the Hida family passing through the
modular form associated with the elliptic curve E. However, this formula does not allow
treat L-functions twisted by ramified characters. Instead, we recast an L-value formula from
[MW09] which allows for ramification, expressed in terms of periods of Gross–Prasad test
vectors, in a more classical framework to get our result.

Remark 1.2. When (cD,N) 6= 1, it may be that π and χ have joint ramification. In this case,
we can instead use [FMP17] in lieu of [MW09], at least in the case that f has squarefree level.

Remark 1.3. The main result of this paper assumes that all primes dividing M are split and p
is inert in F . More generally, the same results are expected to hold under the following relaxed
modified Heegner assumption: p is inert in F and there is a factorization M = M+ ·M− of
M into coprime integers such that a prime number ` | M+ if and only if ` in split in F , and
M− is a product of an even number of distinct primes. If the conductor N of the elliptic
curve E can be factorized as N = M+ ·M− · p with p - M and the discriminant D of the
real quadratic field F , and χ is a primitive quadratic character of G+

c with c odd and coprime
with ND, then one can show that there exists a point Pχ in E(H+

c ) and a rational number
n ∈ Q× such that logE(Pχ) = n · logE(Pχ); moreover, the point Pχ is of infinite order if and
only if L′(E/F, χ, 1) 6= 0. The proof of this result can be obtained with the methods of this
paper by replacing modular curves of level M with Shimura curves of level M+ attached to
quaternion algebras of discriminant M−, following what is done in [LV14] in the case c = 1.
However, since the notation in the quaternionic case is quite different from the notation in
the case of modular curves, we prefer to only treat in detail the case when M− = 1. Details
in the case M− > 1 are left to the reader.

Remark 1.4. The main result of this paper plays a role in the forthcoming works by Darmon-
Rotger [DR] and Bertolini-Seveso-Venerucci [BSV] proving the rationality of Darmon points
(actually, cohomology classes closely related to Darmon points) in situations which go far
beyond the case of quadratic characters considered in this paper. This application was one of
the main motivations for this work.

Acknowledgements. We are grateful to H. Darmon for suggesting the problem and V. Rotger
for many interesting discussions about the topics of this paper. We also thank C.P. Mok for
providing us with a preliminary version of [Mok]. M.L. is supported by PRIN 2015 and BIRD
2017, Padova. K.M. was supported by a grant from the Simons Foundation/SFARI (512927,
KM).
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2. Darmon points

Let the notation be as in the introduction: E/Q is an elliptic curve of conductor N = Mp
with p - M , and F/Q is a real quadratic field of discriminant D = DF such that all primes
dividing M are split in F and p is inert in F . Finally, c is a positive integer prime to ND. The
aim of this section is to review the definition of Darmon points and some results in [BD09]
and [BD07].

We first set up some standard notation. For any field L, let Pk−2(L) be the space of
homogeneous polynomials in 2 variables of degree k− 2, and let Vk−2(L) be its L-linear dual.
We let γ =

(
a b
c d

)
∈ GL2(L) act from the right on P (x, y) ∈ Pk−2(L) by the formula

(P |γ)(x, y) = P (ax+ by, cx+ dy)

and we equip Vk−2(L) with the dual action. If G is any abelian group, let MS(G) be the
group of G-valued modular symbols, i.e. the Z-module of functions I : P1(Q) × P1(Q) → G
such that I(x, y) + I(y, z) = I(x, z) for all x, y, z ∈ P1(Q). The value I(r, s) of I ∈ MS(G) on
(x, y) will be usually denoted I{x → y}. The group GL2(Q) acts from the left by fractional
linear transformations on P1(Q), and if G is equipped with a left P1(Q)-action, then MS(G)
inherits a right GL2(Q)-action by the rule (I|γ)(x, y) = γ · I(γ−1x, γ−1y). If Γ0 is a subgroup
of P1(Q), we denote MSΓ0(G) the subgroup of those elements in MS(G) which are invariant
under the action of γ for all γ ∈ Γ0. If f is a cuspform of level Γ0(M) and weight k, we may

attach to f the standard modular symbol Ĩf ∈ MSΓ0(M)(Vk−2(C)); explicitly, for r, s ∈ P1(Q)
and P (x, y) ∈ Pk−2(C) an homogenous polynomial of degree k − 2, put

Ĩf{r → s}(P (x, y)) = 2πi

∫ s

r
f(z)P (z, 1) dz.

The matrix ω∞ =
(

1 0
0 −1

)
acts on the group of modular symbols MSΓ0(M)(Vk−2(C)), and we let

Ĩ±f denote the projections to the ±-eigenspaces for this action. Suppose that f is a normalized

eigenform and let Kf be the field generated over Q by the Fourier coefficients of f . Then there

are complex periods Ω±f for each choice of sign ± such that their product equals the Petersson

inner product 〈f, f〉, and I±f := Ĩ±f /Ω
±
f satisfies the condition that if P (x, y) ∈ Pk−2(Kf ) then

If{r → s}(P (x, y)) belongs to Kf .

2.1. Measure-valued modular symbols and Darmon points. Let f be the newform of
level N attached to E by modularity. Denote B = M2(Q) the split quaternion algebra over
Q and let R be the Z[1/p]-order in B consisting of matrices in M2(Z[1/p]) which are upper
triangular modulo M . Define

Γ = {γ ∈ R× | det(γ) = 1}.

Let Meas0(P1(Qp),Z) denote the Z-module of Z-valued measures on P1(Qp) with total measure
equal to 0. By [BD09, Proposition 1.3], for each choice of sign±, there exists a unique function,
which we call the measure-valued modular symbol attached to f ,

µ±f : P1(Q)× P1(Q) −→ Meas0
(
P1(Qp),Z

)
denoted (r, s) 7→ µf{r → s}, satisfying the following conditions:

(1) µ±f {r → s}(Zp) = I±f {r → s}
(2) For all γ ∈ Γ and all open compact subsets U ⊆ P1(Qp),

µf{γ(r)→ γ(s)}(U) = µf{r → s}(U),

where we let GL2(Qp) act on P1(Qp) by fractional linear transformations.
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Let Hp = Cp \ Qp denote the p-adic upper half plane. The system of measures µf can be
used to define, for any r, s ∈ P1(Q) and τ1, τ2 ∈ Hp, a double multiplicative integral

×
∫ τ2

τ1

∫ s

r
ωf := ×

∫
P1(Qp)

t− τ2

t− τ1
dµf{r → s}(t).

(On the right, the notation ×
∫

refers to the fact that the integration is relative to the mul-
tiplicative structure of C×p , and therefore is a limit of Riemann products instead of Riemann
sums.) Let q be the Tate period of E at p, and let logq be the branch of the p-adic logarithm
satisfying logq(q) = 0. Define the additive version of the double multiplicative integral to be∫ τ2

τ1

∫ s

r
ωf := logq

(
×
∫ τ2

τ1

∫ s

r
ωf

)
.

We finally introduce the notion of indefinite integral. By [BD09, Proposition 1.5], there
exists a unique function from Hp×P1(Q)×P1(Q) to C, denoted (τ, r, s)→

∫ τ ∫ s
r ωf , satisfying

the following conditions:

(1) The integral is Γ-invariant, in the sense that for all γ ∈ Γ, we have∫ γ(τ) ∫ γ(s)

γ(r)
ωf =

∫ τ ∫ s

r
ωf

(2) For any pair τ1, τ2 ∈ Hp, we have∫ τ2
∫ s

r
ωf −

∫ τ1
∫ s

r
ωf =

∫ τ2

τ1

∫ s

r
ωf ;

(3) For all r, s, t in P1(Q) we have∫ τ ∫ s

r
ωf +

∫ τ ∫ t

s
ωf =

∫ τ ∫ t

r
ωf .

We now define Darmon points using indefinite integrals above. Since p is inert in F , the
set Hp ∩ F is not empty and one may define the order Oτ associated with τ ∈ Hp ∩ F as

Oτ =

{(
a b
c d

)
∈ R | aτ + b = cτ2 + dτ

}
.

The map
(
a b
c d

)
→ cτ + d induces an embedding Oτ ↪→ F , and thus Oτ may be viewed

as an order in F . For τ ∈ Hp ∩ F , let γτ =
(
a b
c d

)
denote the unique generator of the

stabilizer of τ in Γ satisfying cτ + d > 1 (with respect to the chosen embedding F ⊆ Q̄). Let
ΦTate : C×p /qZ → E(Cp) denote the Tate uniformization of E at p. Attached to τ , there is an
indefinite integral

(2) J×τ = ×
∫ τ ∫ γτ (r)

t
ωf ∈ Cp

where r ∈ P1(Qp) is any base point, and one can show that ΦTate(J
×
τ ) is a well-defined point

in E(Cp) independently of the choice of r, up to its torsion subgroup E(Cp)tors.

Definition 2.1. Let τ ∈ Hp ∩ F . The point Pτ = ΦTate(J
×
τ ) ∈ E(Cp)⊗Z Q, with J×τ defined

in (2), is the Darmon point attached to τ .
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2.2. Shimura reciprocity law. Fix an integer c prime to D ·N , and let Oc be the order of
F of conductor c. Denote QDc2 the set of primitive binary quadratic forms of discriminant
Dc2. Let SL2(Z) act from the right on the set QDc2 via the formula

(3) (Q|γ)(x, y) = Q(ax+ by, cx+ dy)

for Q ∈ QDc2 and γ =
(
a b
c d

)
. The set of equivalence classes QDc2/ SL2(Z) is equipped with

a group structure given by the Gaussian composition law. If H+
c is the strict ring class field

of F of conductor c, then its Galois group G+
c = Gal(H+

c /F ) is isomorphic to the group
QDc2/ SL2(Z) via global class field theory (see [Coh78, Theorem 14.19]).

Fix δ ∈ Z such that δ2 ≡ D (mod 4M). Let FDc2 denote the subset of QDc2 consisting of
forms Q(x, y) = Ax2 +Bxy+Cy2 such that M | A and B ≡ δ (mod 2M). The group Γ0(M)
acts on FDc2 by the formula (3). Since (M,D) = 1, we also have (δ,M) = 1, and therefore, by
[GKZ87, Proposition, p. 505], the map Q 7→ Q sets up a bijection between FDc2/Γ0(M) and
QDc2/ SL2(Z). In particular, the set FDc2/Γ0(M) is equipped with a structure of principal
homogeneous space under G+

c . If Q ∈ FDc2/Γ0(M) and σ ∈ G+
c , we denote Qσ for the image

of Q by σ.
Define

H(Dc2)
p = {τ ∈ Hp ∩ F | Oτ = Oc}.

Given Q(x, y) = Ax2 + Bxy + Cy2 a quadratic form in FDc2 , let τQ = −B+c
√
D

2A be a fixed

root of the quadratic polynomial Q(x, 1). Then τQ belongs to H(Dc2)
p (via the fixed p-adic

embedding of F into Q̄p) and its image in Γ\H(Dc2)
p does not depend on the Γ0(M)-equivalence

class of Q. Given σ ∈ G+
c , we will sometimes write τσQ for τQσ .

Let P be a point in E(H+
c ). Since p is inert in K, it splits completely in H+

c , and therefore,
after fixing a prime of H+

c above p, the point P localizes to a point in E(Fp), where Fp is the
completion of F at unique prime above p.

Conjecture 2.2. The Darmon point PτQ is the localization of a global point Pc, defined over

H+
c , and the Galois action on this point is described by the following Shimura reciprocity law:

if Pc ∈ E(H+
c ) localizes to PτQ ∈ E(Fp) then P σc localizes to Pτσq .

2.3. Real conjugation. Denote by τp ∈ Gal(H+
c /Q) the Frobenius element at p, well defined

only up to conjugation. As recalled above, since p is inert in F , it splits completely in H+
c and

(after fixing as above a prime of H+
c above p), τp corresponds to an involution of Gal(Fp/Qp).

By [Dar01, Proposition 5.10], it is known that there exists an element στ ∈ G+
c such that

(4) τp(Jτ ) = −wMJτστ

and τp(Pτ ) = wNPτστ where wM and wN are the signs of the Atkin-Lehner involution WM

and WN , respectively, acting on f .

2.4. Families of measure-valued modular symbols and Darmon points. Let

X = Homcont
Zp (Z×p ,Z×p )

and embed Z into X via k 7→ [x 7→ xk−2]. There are rigid analytic functions κ 7→ an(κ)
for integers n ≥ 1, simultaneously defined on a suitable neighborhood U of 2 (which we may
assume containing only integers k with k ≡ 2 mod p − 1) such that the formal power series
expansion

f∞(κ) =
∑
n≥1

an(κ)qn

when evaluated at κ = k ∈ Z is the q-expansion of a normalized eigenform on Γ0(N) of weight
k, and such that f2 = f , where recall that f is the modular form attached to E by modularity.
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If k 6= 2, fk is necessarily old, and we let f ]k be the form of level Γ0(M) and weight k whose

p-stabilization coincides with f ; so fk and f ]k are related by the formula:

fk(z) = f ]k(z)− p
k−1ap(k)−1f ]k(pz).

For k = 2 we simply put f ]2 = f2 = f .
Let W = Q2

p − {(0, 0)} and let D denote the Qp-vector space of compactly supported Qp-

valued measures on W. Let L∗ = Z2
p. Say that (x, y) ∈ L∗ is primitive if p does not divide

both x and y and let L′∗ = (Z2
p)
′ denote the subset of L∗ consisting of of primitive vectors. Let

D∗ be the subspace consisting of measures which are supported on the L′∗. Let Λ = Zp[[Z×p ]]

be the Iwasawa algebra of Z×p , identified with a subring of the ring of analytic functions on
X . The Qp-vector space D is equipped with a structure of Λ-algebra arising form the action
of Z×p on W and Z2

p given by (x, y) 7→ (λx, λy) for λ ∈ Λ. Also, GL2(Qp) acts from the left on
D∗ by translations, and MSΓ0(M)(D∗) is naturally equipped with an action of Hecke operators.
In particular, we have a Up-operator acting on MSΓ0(M)(D∗) by the formula∫

X
φd(Upµ){r → s} =

p−1∑
a=0

∫
p−1γaX

(φ|pγ−1
a ) dµ{γa(r)→ γa(s)}

for any locally constant function φ on W. Here γa =
(

1 a
0 p

)
, and for any open compact subset

X ⊆ W and any locally constant function φ on W, we put
∫
X φdµ =

∫
L′∗
φ(x)charX(x) dµ(x),

where charX is the characteristic function of X. In particular, we may define MSord
Γ0(M)(D∗)

to be the maximal submodule of MSΓ0(M)(D∗) on which Up acts invertibly. For each k ∈ U
there is a specialization map

ρk : D†∗ −→ Vk−2(Cp)

defined by

ρk(µ)(P (x, y)) =

∫
Zp×Z×p

P (x, y) dµ(x, y).

Let Λ† denote the ring of Cp-valued functions on X which can be represented by a convergent

power series expansion in some neighborhood of 2 ∈ X and define D†∗ = D∗⊗Λ Λ†. For any µ =∑
i λiµi with λi ∈ Λ† and µi ∈ D∗, we call a neighborhood of regularity for µ any neighborhood

Uµ of 2 in U such that all λi converge in Uµ. The module MSord
Γ0(M)(D∗) inherits a Λ-action

from the Λ-module structure of D∗, and we may define MSord,†
Γ0(M)(D∗) = MSord

Γ0(M)(D∗)⊗Λ Λ†.

This Λ†-module is free of finite rank, and given µ ∈ MSord,†
Γ0(M)(D∗) it is possible to find a

common neighborhood of regularity for all the measures µ{r → s}, which we denote Uµ. The
specialization map ρk induces a map, denoted by the same symbol,

ρk : MSord,†
Γ0(M)(D∗) −→ MSΓ0(N)(Vk−2(Cp)),

and [BD07, Theorem 1.5] shows that for each choice of sign ± there exists a neighborhood U

of 2 in X and µ±∗ ∈ MSord,†
Γ0(M)(D∗) such that ρ2(µ±∗ ) = I±f and for all integers k ∈ U , k ≥ 2,

there is λ±(k) ∈ Cp such that ρk(µ
±
∗ ) = λ±(k)I±fk ; also, U can be chosen so that λ±(k) 6= 0

for all k ∈ U .

Theorem 2.3. If Q ∈ FDc2, then

logq(PτQ) =

∫
(Z2
p)′

logq(x− τQy) dµ±∗ {r → s}(x, y)
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Proof. This follows from [BD09, Theorem 2.5] as in [BD09, Corollary 2.6] noticing that the
set

{(x, y) ∈ Q2
p | x− τQy ∈ OK ⊗ Zp}

coincides with Z2
p. �

3. Complex L-functions of real quadratic fields

Here we recast the special value formula of the second author and Whitehouse [MW09],
restricted to the setting of this paper, in a form convenient for our purposes.

Let f ∈ Sk(Γ0(M)) be a even weight k ≥ 2 newform for Γ0(M). Let F/Q be a real quadratic
field of discriminant D > 0, prime to M , and let χD be the associated quadratic Dirichlet
character; with a slight abuse of notation, we will denote by the same symbol χD : A×Q → C×
the associated Hecke character, where AQ is the adele ring of Q. We assume that all primes
` |M are split in F .

Let c be an integer prime to DM and let H+
c be the strict ring class field of F of conductor

c. Let G+
c = Gal(H+

c /F ). Let χ : G+
c → C× be a primitive character, namely, a character

which does not factor through G+
f for any proper divisor f | c; with a slight abuse of notation,

we will denote by the same symbol χ : A×F → C× the associated Hecke character, where AF
is the adele ring of F .

3.1. Optimal embedding theory. We set up the theory of optimal embeddings, and its
relation to the strict, or narrow, class group of Oc and quadratic forms of discriminant Dc2.
For more details, see [LV14, §4.3] or [LRV13, §4.1].

Let us denote by B = M2(Q) the split quaternion algebra over Q and denote by R0 the order
in B consisting of matrices in M2(Z) which are upper triangular modulo M . Let Oc = Z+c·OF
be the order of F of conductor c, where OF is the ring of integers of F . Let Emb(Oc, R0) be
the set of optimal embeddings ψ : F → B of Oc into R0 (so ψ(Oc) = R0 ∩ ψ(F )). For every
prime ` | M fix orientations of R0 and Oc at `, i.e., ring homomorphisms O` : R0 → F` and
o` : Oc → F`. Two embeddings ψ,ψ′ ∈ Emb

(
Oc, R0

)
are said to have the same orientation

at a prime ` |M if O` ◦ (ψ|Oc) = O` ◦ (ψ′|Oc) and are said to have opposite orientations at `
otherwise. An embedding ψ ∈ Emb

(
Oc, R0

)
is said to be oriented if O` ◦ (ψ|Oc) = o` for all

primes ` |M . We denote the set of oriented optimal embeddings of Oc into R0 by E(Oc, R0).
The action of Γ0(M) on Emb(Oc, R0) from the right by conjugation restricts to an action on
E(Oc, R0). If ψ ∈ E(Oc, R0) then ψ∗ := ω∞ψω

−1
∞ belongs to E(Oc, R0) as well, where recall

that ω∞ =
(

1 0
0 −1

)
, and ψ and ψ∗ have opposite orientations at all ` | M . If ` is a prime

dividing M then ψ and ω`ψω
−1
` , where ω` =

(
0 −1
` 0

)
, have opposite orientations at ` and the

same orientation at all primes dividing M/`.
Let a ⊂ Oc be an ideal representing a class [a] ∈ Pic+(Oc) and let ψ ∈ Emb(Oc, R0).

The left R0-ideal R0ψ(a) is principal; let a ∈ R0 be a generator of this ideal with positive
reduced norm, which is unique up to elements in Γ0(M). The right action of ψ(Oc) on R0ψ(a)
shows that ψ(Oc) is contained in the right order of R0ψ(a), which is equal to a−1R0a. This
defines an action of Pic+(Oc) on conjugacy classes of embeddings given by [a] · [ψ] =

[
aψa−1

]
in Emb(Oc, R0)/Γ0(M). The principal ideal (

√
D) is a proper Oc-ideal of F ; denote D its

class in Pic+(Oc) and define σF := rec(D) ∈ G+
c , where rec is the arithmetically normalized

reciprocity map of class field theory. If a = (
√
D) then we can take a = ω∞ · ψ(

√
D) in the

above discussion, which shows that D · [ψ] =
[
ω∞ψω

−1
∞
]

= [ψ∗]. Using the reciprocity map of

class field theory, for all σ ∈ G+
c and [ψ] ∈ Emb(Oc, R0)/Γ0(M) define σ · [ψ] := rec−1(σ) · [ψ].

In particular, σF · [ψ] = [ψ∗] for all ψ ∈ Emb(Oc, R0).
If ψ is an oriented optimal embedding then the Eichler order a−1R0a inherits an orienta-

tion from the one of R0 and it can be checked that we get an induced action of Pic+(Oc)
(and G+

c ) on the set E(Oc, R0)/Γ0(M), and this action is free and transitive. To describe a
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(non-canonical) bijection between E(Oc, R0)/Γ0(M) and G+
c , fix once and for all an auxiliary

embedding ψ0 ∈ E(Oc, R0); then σ 7→ σ · [ψ0] defines a bijection E : G+
c → E(Oc, R0)/Γ0(M)

whose inverse, G = E−1 : E(Oc, R0)/Γ0(M) −→ G+
c satisfies the relation G([ψ∗]) = σF ·G([ψ])

for all ψ ∈ E(Oc, R0). Choose for every σ ∈ G+
c an embedding ψσ ∈ E(σ), so that the family

{ψσ}σ∈G+
c

is a set of representatives of the Γ0(M)-conjugacy classes of oriented optimal em-

beddings of Oc into R0. If γ, γ′ ∈ R0 write γ ∼ γ′ to indicate that γ and γ′ are in the same
Γ0(M)-conjugacy class, and adopt a similar notation for (oriented) optimal embeddings of Oc
into R0. For all σ, σ′ ∈ G+

c one has σ · ψσ′ ∼ ψσσ′ and ψ∗σ ∼ ψσF σ for all σ ∈ G+
c .

Finally, note that the set E(Oc, R0)/Γ0(M) is in bijection with FDc2/Γ0(M), since both
sets are in bijection with G+

c ; explicitly, to the class of the oriented optimal embedding ψ
corresponds the class of the quadratic form

Qψ(x, y) = Cx2 − 2Axy −By2

with ψ(
√
Dc) =

(
A B
C −A

)
.

3.2. Adelic ring class groups. Below we will want to view the ring class group G+
c adel-

ically. Since this is omitted from the literature on class field theory that we are aware of
(adelic treatments usually explain ray class fields but not ring class fields, and expositions of
ring class groups which treat real quadratic extensions, e.g., [Coh78], tend to not use adelic
language), we explain briefly the passage from classical ring class groups to adelic ring class
groups here. For a point of reference, we also describe the relation with ray class groups. As
it causes little extra difficulty, in this subsection only, we allow F to be an arbitrary (real or
imaginary) quadratic field of discriminant D and do not require c to be coprime to D.

Let c ∈ N and m = mfm∞ where mf = cOF and m∞ is a subset of the real places of F .
For a real place v, let σv be the associated embedding of F into R. Let Jm be the group
of fractional ideals of OF which are prime to mf . Let F 1

m be the subset of F× consisting of
x ∈ F× such that σv(x) > 0 for each v ∈ m∞ and vp(x− 1) ≥ vp(c) for p|mf . Let P 1

m denote
the set of principal ideals generated by elements of F 1

m. Then the ray class group mod m of
F is Clm(F ) = Jm/P

1
m.

Let FZ
m be the set of x ∈ F× such that σv(x) > 0 for each v ∈ m∞ and for each p|mf there

exists a ∈ Z coprime to c such that vp(x−a) ≥ vp(c). Let PZ
m be the set of principal ideals in F

generated by elements of FZ
m . Then the ring class group mod m of F is Gm(F ) = Jm/P

Z
m . Note

we can write FZ
m =

⋃
a∈(Z/cZ)× aF

1
m. Hence Clm(F )/Im(Z/cZ)× ' Gm(F ), where Im(Z/cZ)×

denotes the image of the natural map from (Z/cZ)× to Clm(F ), which is not in general
injective.

Via the usual correspondence between ideals and ideles, Jm is identified with F̂×m /Ô×F , where

F̂×m consists of finite ideles (αv) such that αv ∈ O×F,v for all v|mf and Ô×F =
∏
v<∞O

×
F,v. For

v < ∞, we put Wv = O×F,v unless v | mf , in which case Wv = 1 + mfOF,v. For v | ∞,

we put Wv = F×v unless v | m∞, in which case Wv = R>0. Now define W =
∏
Wv and

A1
F,m =

∏′
v-m F

×
v ×

∏
v|mWv. Then we have F 1

m = F× ∩A1
F,m and Jm ' A1

F,m/W , so Clm(F ) =

F 1
m\A1

F,m/W = F×\A×F /W .
For the ring class group, again we can realize it as a quotient of the idele class group

F×\A×F , but now it will be a quotient by a subgroup U =
∏
U`×U∞ which is a product over

rational primes, rather than primes of F . As usual, for a rational prime ` < ∞, write OF,`
for OF ⊗Z Z`, which is isomorphic to Z` ⊕ Z` if ` splits in F and otherwise is OF,v if v is the

unique prime of F above `. Now set U` = O×F,` if ` - c and U` = (Z` + cOF,`)× if ` | c. We can

uniformly write U` = O×c,` for ` <∞, where Oc = Z+cOF and Oc,` = Oc⊗ZZ`. For later use,

we will write Ô×c =
∏
U`. Note that this is different from the product

∏
v<∞O×c,v for v running

over primes of F if c is divisible by primes which split in F . Put U∞ = W∞ =
∏
v|∞W∞ and
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AZ
F,m =

∏′
v-m F

×
v ×

∏
v|m Uv. Then FZ

m = AZ
F,m ∩ F× and we see the ring class group is

Gm(F ) = FZ
m\AZ

F,m/U = F×\A×F /U.
In our case of interest, namely F is real quadratic and m∞ contains both real places of F ,

we write U∞ = F+
∞. Thus we can write our strict ring class group as

(5) G+
c = F×\A×F /Ô

×
c F

+
∞.

3.3. Special value formulas. We return to our case of interest where F/Q is real quadratic
of discriminant D, f is a weight k newform for Γ0(M), c is an integer coprime with DM ,
and Oc = Z + cOF . Let Hc be the corresponding ring class field and hc be the degree of
Hc/F , which coincides with the cardinality of Pic(Oc). Denote by h+

c the cardinality of G+
c ,

so h+
c /hc is equal to 1 or 2. Fix ideals aσ for all σ ∈ Gc = Gal(Hc/F ) in such a way that

Σc = {aσ | σ ∈ Gc} is a complete system of representatives for Pic(Oc). Clearly Σ+
c = Σc

is also a system of representatives for Pic+(Oc) if h+
c = hc, while if h+

c 6= hc the set Σ+
c of

representatives of Pic+(Oc) can be written as Σc∪Σ′c with Σ′c = {daσ | σ ∈ Gc} and d = (
√
D).

Let εc > 1 be the smallest totally positive power of a fundamental unit in O×c , and for all
σ ∈ G+

c define γσ = ψσ(εc). Finally, define

(6) α =
∏

`|c, (D` )=−1

`,

where ` runs over all rational primes dividing c which are inert in F .
Denote by πf and πχ the automorphic representations of GL2(AQ) attached to f and χ,

respectively.

Theorem 3.1. Let c be an integer such that (c,DM) = 1. Let χ be a character of G+
c such

that the absolute norm of the conductor of χ is c(χ) = c2. For any choice of the base point
τ0 ∈ H, we have

L(πf ⊗ πχ, 1/2) =
4

α2 · (Dc2)(k−1)/2

∣∣∣∣∣∣
∑
σ∈G+

c

χ−1(σ)

∫ γσ(τ0)

τ0

f(z)Qψσ(z, 1)(k−2)/2 dz

∣∣∣∣∣∣
2

.

When c = 1, this is the positive weight case of [Pop06, Theorem 6.3.1], which also treats
weight 0 Maass forms. If desired, one could similarly extend the above result to weight 0
Maass forms.

Proof. Write π := πf = ⊗′vπv, where v runs over all places of Q, and let n`(π) be the conductor
of π` for each prime number `. Define

Uf (M) =
∏
`

U`(M), U`(M) =

{(
a b
c d

)
∈ GL2(Z`) : c ≡ 0 mod M

}
.

We associate to f the automorphic form ϕπ = ϕf on GL2(AQ) given by

ϕπ : Z(A) GL2(Q)\GL2(AQ)/Uf (M) −→ C

ϕπ

(
a b
c d

)
= 2j(g; i)kf

(
ai+ b

ci+ d

)
,

for g =
(
a b
c d

)
∈ GL2(R)+, where we write j(g; i) = det(g)1/2(ci + d)−1 for the automorphy

factor. Then ϕπ is R0,`-invariant for each finite prime `. The scaling factor of 2 is present so
that the archimedean zeta integral of ϕπ gives the archimedean L-factor.

For φ ∈ π, let

(φ, φ) =

∫
Z(AQ) GL2(Q)\GL2(AQ)

φ(t)φ(t) dt
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be the Petersson norm of φ, where we take as measures on the groups GL2(AQ) and Z(AQ)
the products of the local Tamagawa measures. Here, as usual, we take the quotient measure
on the quotient, giving GL2(Q) ⊂ GL2(AQ) the counting measure.

Denote by πF the base change of π to F . Let L(πF ⊗χ, s) be the L-function of πF twisted
by χ, which equals the Rankin–Selberg L-function L(πf ⊗πχ, s). Since F splits at each prime
` where π is ramified and at ∞, ε(πF,v⊗, χv, 1/2) = +1 for all places v of Q. Then, in our
setting, the main result in [MW09, Theorem 4.2] states that

(7)
|Pχ(ϕ)|2

(ϕ,ϕ)
=
L(πF ⊗ χ, 1/2)

(ϕ′π, ϕ
′
π)

· 4√
Dc(χ)

·
∏
`|c

(
`

`− χD(`)

)2

,

where ϕ ∈ π is a suitable test vector,

Pχ(ϕ) =

∫
F×A×Q \A

×
F

ϕ(t)χ−1(t) dt,

and ϕ′π (denoted ϕπ in loc. cit.) is a vector in π differing from ϕπ only at ∞. We describe ϕ
and ϕ′π precisely below. Similar to before, we take the products of local Tamagawa measures
on A×F and A×Q, and give F× the counting measure.

First we describe the choice of the test vector ϕ, which we only need to specify up to scalars,
as the left-hand side above is invariant under scalar multiplication. We will take ϕ = ⊗′vϕv,
where v runs over all places of Q. For ` a finite prime of Q, let c(χ`) denote the smallest n
such that χ` is trivial on (Z` + `nOF,`)×. Since χ is a character of G+

c , we have c(χ`) ≤ v`(c)
for all `. In particular, χ` is trivial on Z×` , so c(χ`) is the smallest n such that χ` is trivial
on (1 + `nOF,`)×, and thus agrees with the usual definition of the conductor of χ` when `
is inert in F . Similarly, if ` is ramified in F , say ` = p2, then c(χ`) is twice the conductor
of χ` = χp : F×p → C×, though this case does not occur by our assumption (c,D) = 1. If

` = p1p2 is split in F , then we can write χ` = χp1 ⊗χp2 with χp1 , χp2 characters of Q×` , which

are inverses of each other on Z×` as χ` is trivial on Z×` . Hence χp1 and χp2 have the same
conductor, which is c(χ`). Consequently, c(χ), the absolute norm of the conductor of χ, is

(8) c(χ) = Norm

(∏
`

`c(χ`)

)
=
∏
`

`2c(χ`).

Note that since (c,M) = 1, we have c(χ`) = 0 whenever π` is ramified, i.e., the conductor

c(π`) > 0. If c(χ`) = 0, let Rχ,` be an Eichler order of reduced discriminant `c(π`) in M2(Q`)
containing OF,`. If c(χ`) > 0, so π` is unramified, let Rχ,` be a maximal order of M2(Q`) which

optimally contains Z`+`c(χ`)OF,`. In either case, Rχ,` is unique up to conjugacy and pointwise

fixes a 1-dimensional subspace of π`. For ` <∞, take ϕ` ∈ π
Rχ,`
` nonzero, normalized in such

a way that ⊗′ϕ` converges. For instance, we can take ϕ` = ϕπ,` at almost all `. Each ϕ` is a
local Gross–Prasad test vector, and our assumptions imply that the local Gross–Prasad test
vectors ϕ` are (up to scalars) translates of the new vectors ϕπ,`. (Gross–Prasad test vectors
are not translates of new vectors in general.)

Embed F into M2(Q) as follows. Consider a quadratic form

Q(x, y) = −C
2
x2 +Axy +

B

2
y2 ∈ FDc2 .

This means Q is primitive of discriminant Dc2 = A2 +BC, 2 | B and 2M | C, which implies

A2 ≡ Dc2 mod 4. Take the embedding of F into M2(Q) induced by
√
Dc 7→

(
A B
C −A

)
. Then

Oc = R0 ∩ F , and

F×∞ =

{
g(x, y) :=

(
x+Ay By
Cy x−Ay

)
∈ GL2(R)

}
.
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For a prime ` - c, we have Oc,` = OF,` ⊂ R0,`. Thus we may take Rχ,` = R0,` for ` - c such that
χ` is unramified—in particular, for ` - cD. When χ` is ramified, we may take Rχ,` = R0,` if

and only if c(χ`) = v`(c). By assumption, c(χ) =
∏
` `

2c(χ`) = c2, so we may take Rχ,` = R0,`

at each finite place `. Thus we may and will take ϕ` to be ϕπ,` at each `.
Now we describe ϕ∞. Note we can identify F×∞/Q×∞ with F 1

∞/{±1}, where

F 1
∞ = F 1,+

∞ ∪ F 1,−
∞ , F 1,±

∞ = {g(x, y) ∈ F×∞ : det g(x, y) = x2 −Dc2y2 = ±1}.
Let

γ∞ =

(
A+
√
Dc A−

√
Dc

C C

)
.

Then

γ−1
∞

(
A B
C −A

)
γ∞ =

(√
Dc 0

0 −
√
Dc

)
.

So

γ−1
∞ F 1

∞γ∞ =

{(
x+ y

√
Dc 0

0 x− y
√
Dc

)
: x2 −Dc2y2 = ±1

}
.

The maximal compact subgroup of F 1
∞ is

ΓF = γ∞

{(
±1 0
0 ±1

)}
γ−1
∞ = {±I,±g(0,−(

√
Dc)−1)},

where one reads the ± signs independently. Let U∞ = γ∞O(2)γ−1
∞ , where O(2) denotes the

standard maximal compact subgroup of GL2(R). Then U∞ ⊃ ΓF , and the archimedean test
vector in [MW09] is the unique up to scalars nonzero vector ϕ∞ lying in the minimal U∞-type
such that ΓF acts by χ∞ on ϕ∞. Specifically, we can take

(9) ϕ∞ = π∞(γ∞)(ϕ∞,k ± ϕ∞,−k),

where ϕ∞,±k = 1
2π∞

(±1 0
0 1

)
ϕπ is a vector of weight ±k in π∞, and the ± sign in (9) matches

the sign of χ∞
(−1 0

0 1

)
. This completely describes the test vector ϕ chosen in [MW09].

For our purposes, we would like to work with a different archimedean component than ϕ∞,
corresponding to (a translate of) ϕπ. Let ϕ− be the pure tensor in π which agrees with ϕ at
all finite places, and is defined like ϕ∞ at infinity except using the opposite sign in the sum
(9). Then necessarily any χ∞-equivariant linear function on π∞ kills ϕ−∞, so Pχ(ϕ−) = 0.
Hence Pχ(ϕ) = Pχ(ϕ′) where ϕ′ = ϕ + ϕ−, and we can write ϕ′ = ⊗ϕ′v, where ϕ′` = ϕ` for
finite primes ` and ϕ′∞ = π∞(γ∞)ϕπ, i.e., ϕ′(x) = ϕπ(xγ∞).

Finally, we describe the vector ϕ′π appearing in (7). It is defined to a factorizable function
in π whose associated local Whittaker functions are new vectors whose zeta functions are the
local L-factors of π at finite places, and at infinity is the vector in the minimal O(2)-type that
transforms by χ∞ under

(±1 0
0 ±1

)
such that the associated Whittaker function (restricted to

first diagonal component) at infinity is W∞(t) = 2χ∞
(
t 0
0 1

)
|t|k/2e−2π|t|. (This normalization

gives L∞(s, π) =
∫∞

0 W∞(t)|t|s−1/2 d×t.) Thus ϕ′π agrees with ϕπ at all finite places and
ϕ′π,∞ = 2(ϕ∞,k ± ϕ∞,−k), where the ± sign matches that in (9).

Hence ϕ = 1
2π(γ∞)ϕ′π, so by invariance of the inner product we have (ϕ,ϕ) = 1

4(ϕ′π, ϕ
′
π),

and (7) becomes

(10)
∣∣Pχ(ϕ′)

∣∣2 = |Pχ(ϕ)|2 = L(πF ⊗ χ, 1/2) · 1√
Dc
·
∏
`|c

(
`

`− χD(`)

)2

.

Now we want to rewrite Pχ(ϕ′). Recall that εc > 1 is the smallest totally positive power of
a fundamental unit in O×c . From (5), we obtain the isomorphism

A×QF
×\A×F /Ô

×
c ' G+

c · (F+
∞/〈εc〉Q+

∞) ' G+
c · (F 1,+

∞ /〈±εc〉).
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We may identify

F 1,+
∞ /〈±εc〉 =

{(
x+Ay By
Cy x−Ay

)
∈ SL2(R) : 1 ≤ x+ y

√
Dc < εc

}
,

and the orbit of γ∞i in the upper half plane by this set is the geodesic segment connecting
γ∞i to εcγ∞i, i.e., the image under γ∞ of {iy : 1 ≤ y ≤ ε2c} ⊂ H. Let us call this arc Υ.

Since A×Q ⊂ F×Ô×c F+
∞ and G+

c ' F×\A×F /Ô×c F+
∞ where F+

∞ = (R>0)2, we see that

χ is trivial on A×QÔ×c F+
∞. The Tamagawa measure gives vol(F×A×Q\A

×
F ) = 2L(1, η) =

4hF log εF vol(Ô×), where η is the quadratic character of A×Q/Q
× attached to F/Q and

εF is the fundamental unit of F . This implies vol(A×QF
×\A×F /Ô×c ) = 2h+

c len(Υ), where

len(Υ) = 2 log εc is the length of Υ with respect to the usual hyperbolic distance. Thus we
compute

Pχ(ϕ′) = 2 vol(Ô×c )
∑
t∈G+

c

χ−1(t)

∫
F 1,+
∞ /〈±εc〉

ϕπ(tgγ∞) dg

= 4 vol(Ô×c )
∑
t∈G+

c

χ−1(t)

∫ εc

1
j
(
tγ∞

(
u 0
0 u−1

)
; i
)k
f
(
tγ∞

(
u 0
0 u−1

)
· i
)
d×u

= 2 vol(Ô×c )
∑
t∈G+

c

χ−1(t)

∫ ε2c

1
j
(
tγ∞

(
y 0
0 1

)
; i
)k
f
(
tγ∞

(
y 0
0 1

)
· i
)
d×y,

where we use that f has trivial central character and the substitution y = u2 at the last step.
For ` a rational prime dividing c, note that O×F,`/O

×
c,` ' Z×` /(1 + cZ`) when ` splits in F

and O×F,`/O
×
c,` ' (O×F,`/(1 + cOF,`))/(Z×` /(1 + cZ`)) when ` is inert in F . Hence, with our

choice of measures,

vol(Ô×c ) = vol(Ô×F )
∏
`|c

[O×F,` : O×c,`]
−1 =

1√
D

∏
`|c, (D` )=1

1

(`− 1)`v`(c)−1
·

∏
`|c, (D` )=−1

1

(`+ 1)`v`(c)
,

where ` runs over rational primes.
The next task is then to rewrite the integral appearing the in right hand side of the above

formula. Let z = γ∞iy. Then

z =
A

C
+

√
Dc

C

(
1− 2

1 + iy

)
.

Since

2iy

(1 + iy)2
=

2

1 + iy
− 1

2

(
2

1 + iy

)2

=
BC + 2ACz − C2z2

2Dc2
,

we have

j

(
γ∞

(
y 0
0 1

)
; i

)−2

=
C(1 + iy)2

2
√
Dcy

=
2i
√
Dc

−Cz2 + 2Az +B
=

i
√
Dc

Q(z, 1)
,

and

dz =
2iy
√
Dc

C(1 + iy)2
d×y, i.e. d×y =

2
√
Dc

−Cz2 + 2Az +B
dz =

√
Dc

Q(z, 1)
dz.

Making the change of variable z = γ∞iy, the above expression can be rewritten as

Pχ(ϕ′) =
2 vol(Ô×c )

ik/2 · (
√
Dc)(k−2)/2

·
∑
t∈G+

c

χ−1(t)

∫
Υ
f(tz) ·Q(z, 1)(k−2)/2 dz.
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After another change of variable z′ = tz, the above integral becomes∫
tΥ
f(z′) ·Q(t−1z′, 1)(k−2)/2 dz′ =

∫
tΥ
f(z′) · (Q|t−1)(z′, 1)(k−2)/2 dz′

=

∫ (tεct−1)τt

τt

f(z′) · (Q|t−1)(z′, 1)(k−2)/2 dz′,

where τt = tγ∞i. Now, as long as t varies in G+
c , the quadratic forms Q|t−1 are representatives

for the classes in FDc2/Γ0(M), as discussed in §3.1. Moreover, since Υ is closed in H/Γ0(N),
this integral does not depend on the choice of base point. Plugging this into (10) gives the
asserted formula. �

3.4. Genus fields attached to orders. Assume from now on that c is odd. The genus
field attached to the order Oc of discriminant Dc2 is the finite abelian extension of Q, with
Galois group isomorphic to copies of Z/2Z, contained in the strict class field H+

c of F of

conductor c and generated by the quadratic extensions Q(
√
Di) and Q(

√
`∗) where D =

∏
iDi

is any possible factorization of D into primary discriminants, ` | c is a prime number and

`∗ = (−1)(`−1)/2`. See [Coh78, pp. 242-244] for details.
Fix a quadratic character χ : G+

c → {±1}.

Definition 3.2. We say that χ is primitive if it does not factor through H+
f for a proper

divisor f | c.

We assume that χ : G+
c → {±1} is primitive. By (8), this means c(χ) = c2. Then χ cuts

out a quadratic extension Hχ/F which, by genus theory for Oc, is biquadratic over Q. Each

quadratic extension of Q contained in the genus field of the order Oc is of the form Q(
√

∆)
for some ∆ = D′ ·

∏s
j=1 `

∗
j , with `j | c and D′ a fundamental discriminant dividing D. Write

Hχ = Q(
√

∆1,
√

∆2), with ∆i = Di ·
∏si
j=1 `

∗
i,j for i = 1, 2 as above (so `i,j are primes dividing

c), and let K1 = Q(
√

∆1) and K2 = Q(
√

∆2). Since the third quadratic extension contained

in Hχ is the quadratic extension is Q(
√
D), we have ∆1 ·∆2 ≡ D · x2 for some x ∈ Q×. We

can write ∆1 = D1d and ∆2 = D2d for some d =
∏s
j=1 `

∗
j with `i | c primes and D = D1 ·D2 a

factorization into fundamental discriminants, allowing D1 = D or D2 = D. If d 6= ±c, then χ
factors through the extension H+

d 6= H+
c by the genus theory of the order of conductor Dd2,

and therefore χ is not a primitive character of H+
c . So d = ±c. Thus we conclude that the

quadratic fields K1 = Q(
√
D1d) and K2 = Q(

√
D2d) satisfy the following properties:

• D1 ·D2 = D, where D1 and D2 are two coprime fundamental discriminants (possibly
equal to 1).
• d = ±c and d is a fundamental discriminant.

Let χD1d and χD2d be the quadratic characters attached to the extensions K1 and K2

respectively; thus χD1d(x) =
(
D1d
x

)
and χD2d(x) =

(
D2d
x

)
. Similarly, let χD be the quadratic

character attached to the extension F/Q, i.e., χD(x) =
(
D
x

)
. In particular, for all ` - c we

have

(11) χD(`) = χD1d(`) · χD2d(`).

Say that χ has sign +1 if Hχ/F is totally real, and sign −1 otherwise. If χ has sign
w∞ ∈ {±1}, put If = Iw∞f and Ωf = Ωw∞

f . Define

L(f, χ) :=
∑
σ∈G+

c

χ−1(σ)If{τ0 → γψσ(τ0)}
(
Qψσ(x, y)(k−2)/2

)
.

Lemma 3.3. L(f, χ) = w∞ · L(f, χ).
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Proof. This follows from the discussion in [Pop06, §6.1]. To simplify the notation, define

Θψ := If{τ0 → γψ(τ0)}
(
Qψ(x, y)(k−2)/2

)
,

which is independent of the choice of τ0 and the Γ0(M)-conjugacy class of ψ. Let z 7→ z̄
denote complex conjugation. A direct computation shows that Θψ = Θψ∗ where recall that
ψ∗ = ω∞ψω

−1
∞ . From the discussion in §3.1 we have σF · [ψ] = [ψ∗], and it follows that

Θψ = ΘσFψ. Taking sums over a set of representatives of optimal embeddings shows that

L(f, χ) = χ(σF ) · L(f, χ). Let Hχ be the field cut out by χ. The description of a system of
representatives Σc and Σ+

c of Gal(Hc/F ) and Gal(H+
c /F ) in §3.3 shows that if χ(σF ) = 1 then

Hχ is contained in Hc, and therefore Hχ is totally real. On the other hand, if χ(σF ) = −1,
then Hχ cannot be contained in Hc, and therefore it is not totally real, so it is the product
of two imaginary extensions. By definition of the sign of χ, this means that L(f, χ) is a real
number when χ is even, and is a purely imaginary complex number when χ is odd, and the
result follows. �

Using the relation

L(πg × πχ, 1/2) =
4

(2π)k

((
k − 2

2

)
!

)2

L(f/F, χ, k/2),

it follows from Lemma 3.3 that Theorem 3.1 can be rewritten in the following form:

(12) L(f/F, χ, k/2) =
(2πi)k−2 · Ω2

f ·w∞((
k−2

2

)
!
)2 · α2 · (Dc2)(k−1)/2

· L(f, χ)2.

Remark 3.4. By the lemma, the sign w∞ should also appear in equation (28) of [BD09], as
the left hand side of that equation is not positive when χ is odd. However, the main result in
[BD09] still follows as this sign will cancel out with a sign arising from Gauss sums as in our
argument below.

4. p-adic L-functions

Recall the notation introduced in §2.4: f∞ is the Hida family passing through the weight
two modular form f of level N = Mp associated to the elliptic curve E by modularity; U is a
connected neighborhood of 2 in the weight space X ; µ±∗ is a measure-valued modular symbol
satisfying the property that for all integers k ∈ U , k ≥ 2, there is λ±(k) ∈ C×p such that

ρk(µ
±
∗ ) = λ±(k)I±fk and λ±(2) = 1.

4.1. p-adic L-function of real quadratic fields. For any Q ∈ FDc2 and κ ∈ U , define

Q(x, y)(κ−2)/2 = expp

(
κ− 2

2
logq (〈Q(x, y)〉)

)
where expp is the p-adic exponential and for x ∈ Qp, we let 〈x〉 denote the principal unit

of x, satisfying x = pordp(x)ζ〈x〉 for a (p − 1)-th root of unity ζ. Recall the Hida family f∞
introduced in §2.4.

Definition 4.1. Let Q ∈ FDc2 and let γτQ be the generator of the stabilizer of the root τQ
of Q(z, 1), chosen as in Definition 2.1.

(1) Let r ∈ P1(Q). The partial square root p-adic L-function attached to f∞, a choice of
sign ±, and Q is the function of κ ∈ U defined by

L±p (f∞/F,Q, κ) =

∫
(Z2
p)′
Q(x, y)(κ−2)/2 dµ±∗ {r → γτQ(r)}(x, y).
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(2) Let χ be a character of G+
c . The square root p-adic L-function attached to f∞, a

choice of sign ±, and χ is the function of κ ∈ U defined by

L±p (f∞/F, χ, κ) =
∑
σ∈G+

c

χ−1(σ)L±p (f∞/F,Q
σ, κ).

(3) The p-adic L-function attached to f∞, the sign ±, and χ is

L±p (f∞/F, χ, κ) =
(
L±p (f∞/F, χ, κ)

)2
.

Let χ : G+
c → {±1} be a quadratic ring class character. Let ε be the sign of χ and set w∞ =

ε. Denote µ∗ = µw∞∗ , Ωfk = Ωw∞
fk

, λ(k) = λw∞(k) and Lp(f∞/F, χ, k) = Lw∞p (f∞/F, χ, k).

Recall the newform f ]k whose p-stabilization is the weight k specialization of the Hida family
f∞ introduced in §2.4. Define the algebraic part of the central value of the L-function of the

newform f ]k twisted by χ to be

Lalg(f ]k/F, χ, k/2) =

((
k−2

2

)
!
)2√

Dc

(2πi)k−2 · Ω2
f]k

· L(f ]k/K, χ, k/2).

Theorem 4.2. For all integers k ∈ U , k ≥ 2, we have

Lp(f∞/F, χ, k) = λ(k)2 · α2 · (1− ap(k)−2pk−2)2 · (Dc2)(k−2)/2 · Lalg(f ]k/F, χ, k/2)

where the rational number α is defined in (6).

Proof. By definition,

Lp(f∞/F,Q, k) =

∫
(Z2
p)′
Q(x, y)(k−2)/2 dµ∗{r → γτQ(r)}(x, y)

= λ(k)(1− ap(k)−2pk−2)I
f]k
{r → γτQ(r)}(Q(k−2)/2),

where the last equality follows from [BD09, Proposition 2.4] and therefore we get, in the
notation of Section 3.4,

Lp(f∞/F, χ, k) = λ(k)2(1− ap(k)−2pk−2)2 · L(f ]k, χ)2.

Using (12) gives the result. �

4.2. Mazur–Kitagawa p-adic L-functions. Let χ : (Z/mZ)× → {±1} be a primitive

quadratic Dirichlet character of conductor m. Suppose that χ(−1) = (−1)(k−2)/2w∞ and put
Ωfk = Ωw∞

fk
, λ(k) = λw∞(k) and µ∗ = µw∞∗ . For k ∈ U a positive integer define

Lalg(f ]k, χ, k/2) =
τ(χ)((k − 2)/2)!

(−2πi)(k−2)/2Ω
f]k

L(f ]k, χ, k/2)

as the algebraic part of the central special value of L(f ]k, χ, s), where τ(χ) =
∑m

a=1 χ(a)e2πia/m

denotes the Gauss sum of the character χ. The Mazur–Kitagawa p-adic L-function is defined
as

Lp(f∞, χ, k, s) =

m∑
a=1

χ(pa)

∫
Z×p ×Z×p

(
x− pa

m
y
)s−1

yk−s−1 dµ∗{∞ → pa/m}

and satisfies the following interpolation formula: for all integers k ∈ U with k ≥ 2 we have

(13) Lp(f∞, χ, k, k/2) = λ(k)(1− χ(p)ap(k)−1p(k−2)/2)2Lalg(f ]k, χ, k/2).
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4.3. A factorization formula for genus characters. Let χ : G+
c → {±1} be a primitive

character, and let χD1d : Q(
√
D1d) → {±1} and χD2d : Q(

√
D2d) → {±1} be the associated

quadratic Dirichlet characters.

Theorem 4.3. The following equality

Lp(f∞/F, χ, κ) = α2 · (Dc2)(κ−2)/2 · Lp(f∞, χD1d, κ, κ/2) · Lp(f∞, χD2d, κ, κ/2)

holds for all κ ∈ U , where the rational number α is defined in (6).

Proof. Let χDid denote the quadratic characters associated with the extension Q(
√
Did). Since

p is inert in F , we have χD(p) = −1, and therefore from (11) we get

χD1d(p) = −χD2d(p).

It follows that the Euler factor (1 − ap(k)−2pk−2)2 appearing in Theorem 4.2 is equal to the
product of the two Euler factors

(1− χD1d(p)ap(k)−1p(k−2)/2)2 and (1− χD2d(p)ap(k)−1p(k−2)/2)2

appearing in (13). By comparison of Euler factors, we see that for all even integers k ≥ 4 in
U we have

(14) L(f ]k/F, χ, s) = L(f ]k, χD1d, s) · L(f ]k, χD2d, s).

Therefore, from Theorem 4.2 and the factorization formula (14) it follows that for all even
integers k ≥ 4 in U the following factorization formula holds:
(15)

Lp(f∞/F, χ, k) =

(
α2 ·
√
Dc · (Dc2)(k−2)/2·w∞
τ(χD1d) · τ(χD2d)

)
· Lp(f∞, χD1d, k, k/2) · Lp(f∞, χD2d, k, k/2).

Since Did are fundamental discriminants, τ(χDid) =
√
Did (interpreting

√
x as i

√
|x| for

x < 0), so
√
Dc

τ(χD1d
)·τ(χD2d

) = w∞, and the formula in the statement holds for all even integers

k ≥ 4 in U . Since Z ∩ U is a dense subset of U , and the two sides of equation (15) are
continuous functions in U , they coincide on U . �

5. The main result

Let the notation be as in the introduction: E/Q is an elliptic curve of conductor N = Mp
with p -M , p 6= 2, and F/Q a real quadratic field of discriminant D = DF such that all primes
dividing M are split in F and p is inert in F . Finally, c ∈ Z is a positive integer prime to ND
and χ : G+

c → {±} is a primitive quadratic character of the strict ring class field of conductor
c of F . Let w∞ be the sign of χ, and as above put Lp(f∞/F,Q, κ) = Lw∞p (f∞/F,Q, κ),
Lp(f∞/F, χ, κ) = Lw∞p (f∞/F, χ, κ) and Lp(f∞/F, χ, κ) = Lw∞p (f∞/F, χ, κ).

We begin by observing that Lp(f∞/F,Q, 2) = 0, since its value is µf{r → γτQ(r)}(P1(Qp)),
and the total measure of µf is zero. For the next result, let wM be the sign of the Atkin–Lehner
involution acting on f . Also, let logE : E(Cp) → C denote the logarithmic map on E(Cp)
induced from the Tate uniformization and the choice of the branch logq of the logarithm fixed
above.

Theorem 5.1. For all quadratic characters χ : G+
c → {±1} we have

d

dκ
Lp(f∞/F, χ, κ)κ=2 =

1

2
(1− χD1d(−M)wM ) logE(Pχ),

where Pχ is defined as in (1).
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Proof. We have

d

dκ
LQ(f∞/F, χ, κ)κ=2 =

1

2

∫
(Z2
p)′

(logq(x− τQy) + logq(x− τ̄Qy)) dµ∗{r → γτQ(r)}

=
1

2
(logE(PτQ) + logE(τpPτQ)).

By (4), τp(JτQ) = −wMJ
τ
στQ
Q

and by [BD09, Proposition 1.8] (whose extension to the present

situation presents no difficulties) we know that χ(σ) = χD1d(−M), so the result follows
summing over all Q. �

Theorem 5.2. Let χ be a primitive quadratic character of G+
c with associated Dirichlet

characters χD1d and χD2d. Suppose that χD1d(−M) = −wM . Then:

(1) There is a point Pχ in E(Hχ)χ and n ∈ Q× such that logE(Pχ) = n · logE(Pχ).
(2) The point Pχ is of infinite order if and only if L′(E/F, χ, 1) 6= 0.

Proof. By Theorem 5.1 we have

1

2

d2

dκ2
Lp(f∞/F, χ, κ)κ=2 = log2

E(Pχ).

On the other hand, by the factorization of Theorem 4.3 we have

Lp(f∞/F, χ, κ) = α2 · (Dc2)(k−2)/2 · Lp(f∞, χD1d, κ, κ/2) · Lp(f∞, χD2d, κ, κ/2),

where the integer α is defined in (6). Let sign(E,χDid) = −wNχDid(−N), where wN is the
sign of the Atkin–Lehner involution at N . This is the sign of the functional equation of the
complex L-series L(E,χDid, s). Since

χD1d(−N) · χD2d(−N) = χD(−N) = −1,

we may order the characters χD1d and χD2d in such a way that sign(E,χD1d) = −1 and
sign(E,χD2d) = +1. So χD1d(−N) = wN and since χD1d(−M) = −wM it follows that
χD1d(p) = −wp = ap. So the Mazur–Kitagawa p-adic L-function Lp(f, χD1d, κ, s) has an
exceptional zero at (κ, s) = (2, 1), and its order of vanishing is at least 2. We may apply
[BD07, Theorem 5.4], [Mok11, Sec. 6] and [Mok, Theorem 3.1], which show that there is a
global point PχD1d

∈ E(Q(
√
D1c)) and a rational number `1 ∈ Q× such that

d2

dκ2
Lp(f∞, χD1d, κ, κ/2)κ=2 = `1 log2

E(PχD1d
),

and this point is of infinite order if and only if L′(E,χD1d, 1) 6= 0. Moreover, `1 ≡ Lalg(f, ψ, 1)
mod (Q×)2 for any primitive Dirichler character ψ such that L(f, ψ, 1) 6= 0, ψ(p) = −χD1d(p),
and ψ(`) = χD1d(`) for all ` |M . Now

`2 =
1

2
Lp(f∞, χD2d, 2, 1) = Lalg(E,χD2d, 1)

is a rational number which is non-zero if and only if L(E,χD2d, 1) 6= 0. In this case, `1`2 is a
square: choose t ∈ Q× such that t2 = `1`2 if `2 6= 0 and t = 1 otherwise, and let Pχ = PχD1d

in the first case and 0 otherwise. Now the first part of the theorem follows setting n = α · t.
Finally, for the second part note that L(E,χD2d, 1) 6= 0 if and only if L′(E/F, χ, 1) 6= 0 thanks
to the factorization (14). �
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(2005), no. 3, 427–469. MR 2166341

[DR] Henri Darmon and Victor Rotger, Stark-Heegner points and generalized Kato classes, preprint 2017.
[FMP17] Daniel File, Kimball Martin, and Ameya Pitale, Test vectors and central L-values for GL(2), Algebra

Number Theory 11 (2017), no. 2, 253–318. MR 3641876
[GKZ87] B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann.

278 (1987), no. 1-4, 497–562. MR 909238
[GM13] Xavier Guitart and Marc Masdeu, Computation of ATR Darmon points on nongeometrically modular

elliptic curves, Exp. Math. 22 (2013), no. 1, 85–98. MR 3038785
[GM14] , Overconvergent cohomology and quaternionic Darmon points, J. Lond. Math. Soc. (2) 90

(2014), no. 2, 495–524. MR 3263962
[GM15a] , Elementary matrix decomposition and the computation of Darmon points with higher con-

ductor, Math. Comp. 84 (2015), no. 292, 875–893. MR 3290967
[GM15b] , A p-adic construction of ATR points on Q-curves, Publ. Mat. 59 (2015), no. 2, 511–545.

MR 3374616
[GMcS15] Xavier Guitart, Marc Masdeu, and Mehmet Haluk ¸Sengün, Darmon points on elliptic curves

over number fields of arbitrary signature, Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 484–518.
MR 3384519

[Gre09] Matthew Greenberg, Stark–Heegner points and the cohomology of quaternionic Shimura varieties,
Duke Math. J. 147 (2009), no. 3, 541–575. MR 2510743

[GS16] Matthew Greenberg and Marco Seveso, p-adic families of cohomological modular forms for indefinite
quaternion algebras and the Jacquet-Langlands correspondence, Canad. J. Math. 68 (2016), no. 5,
961–998. MR 3536925

[GSS16] Matthew Greenberg, Marco Adamo Seveso, and Shahab Shahabi, Modular p-adic L-functions at-
tached to real quadratic fields and arithmetic applications, J. Reine Angew. Math. 721 (2016),
167–231. MR 3574881

[LRV12] Matteo Longo, Victor Rotger, and Stefano Vigni, On rigid analytic uniformizations of Jacobians of
Shimura curves, Amer. J. Math. 134 (2012), no. 5, 1197–1246. MR 2975234

[LRV13] , Special values of L-functions and the arithmetic of Darmon points, J. Reine Angew. Math.
684 (2013), 199–244. MR 3181561

[LV14] Matteo Longo and Stefano Vigni, The rationality of quaternionic Darmon points over genus fields
of real quadratic fields, Int. Math. Res. Not. IMRN (2014), no. 13, 3632–3691. MR 3229764

[LV16] , Quaternionic Darmon points on abelian varieties, Riv. Math. Univ. Parma (N.S.) 7 (2016),
no. 1, 39–70. MR 3675402

[Mok] Chung Pang Mok, On a theorem of Bertolini–Darmon about rationality of Stark–Heegner points
over genus fields of real quadratic fields, preprint.

[Mok11] , Heegner points and p-adic L-functions for elliptic curves over certain totally real fields,
Comment. Math. Helv. 86 (2011), no. 4, 867–945. MR 2851872

[MW09] Kimball Martin and David Whitehouse, Central L-values and toric periods for GL(2), Int. Math.
Res. Not. IMRN (2009), no. 1, Art. ID rnn127, 141–191. MR 2471298

[Pop06] Alexandru A. Popa, Central values of Rankin L-series over real quadratic fields, Compos. Math.
142 (2006), no. 4, 811–866. MR 2249532

[RS12] Victor Rotger and Marco Adamo Seveso, L -invariants and Darmon cycles attached to modular
forms, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1955–1999. MR 2984593

[Sev12] Marco Adamo Seveso, p-adic L-functions and the rationality of Darmon cycles, Canad. J. Math. 64
(2012), no. 5, 1122–1181. MR 2979580



20 MATTEO LONGO, KIMBALL MARTIN AND YAN HU
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