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Exercise 0.1. Read the introduction. It’s a roadmap for the course. In fact, you may want to
reread it several times throughout the course to remember where we’ve been and where we’re going.

Introduction

Last semester, we saw some of the power of Algebraic Number Theory. The basic idea was the
following. If for example, we wanted to determine

Which numbers are of the form x2 + ny2? (0.1)

(For simplicity, assume n is squarefree.) Brahmagupta’s composition law tells us that the product
of two numbers of this form is again of this form, and therefore it make sense to first ask

Which primes p are of the form x2 + ny2 = p? (0.2)

The idea of Algebraic Number Theory is to work with the ring Z[
√
−n] so any p such that

p = x2 + ny2 = (x + y
√
−n)(x− y

√
−n) factors over Z[

√
−n]. At this point one would like to use

the Prime Divisor Property (or equivalently, Unique Factorization) to say that this means p is not
prime in Z[

√
−n]. Unfortunately this does not always hold in Z[

√
−n], and there were two things

we did to overcome this obstacle. The first was to work with OQ(
√
−n) which is sometimes larger

than Z[
√
−n], and may have unique factorization when Z[

√
−n] does not (we saw this for the case

n = 3—it happens for other values of n also, but still only finitely many times when n > 0).
Otherwise, we should use Dedekind’s ideal theory. The main idea here is we have the Prime

Divisor Property and Unique Factorization at the level of ideas. Hence if p = x2 + ny2, the ideal
(p) = pOQ(

√
−n) in OQ(

√
−n) is not a prime ideal and factors into two principal prime ideals (not

necessarily distinct) (p) = p1p2, each of norm p. Further, p1 = (x+ y
√
−n) and p2 = (x− y

√
−n).

In fact, with some slight modifications, the converse is also true. To understand this, we first need
to understand the more basic question

When is pOQ(
√
−n) a prime ideal, and when does it factor? (0.3)

Once we know for which primes p ∈ N, (p) is not prime in OQ(
√
−n) (in which case we say p splits

in Q(
√
−n)), we need to know

What is the class group of Q(
√
−n)? (0.4)

to determine when (p) is a product of two principal ideals in OQ(
√
−n). The first part of the semester

will be motivated by these questions, though we shall spend a lot of our time pursuing related
questions and topics along the way. In other words, our goal is not so much to seek a definitive
answer to the question (0.2) (see [Cox]), but rather to use it as a guide to understand and pursue
some important topics in number theory. Consequently, we will see how these ideas are related to (i)
Dirichlet’s class number formula, (ii) Dirichlet’s theorem that any arithmetic progression with gcd
1 contains infinitely many primes and (iii) Kummer’s approach to Fermat’s Last Theorem. Some
references for this part of the course are [Cohn], [Stewart–Tall], [Borevich–Shafarevich], and [Cox],
or more generally, any book on Algebraic Number Theory.

Even knowing an answer to (0.2), we still won’t have a complete answer to (0.1), since the
converse to Brahmagupta’s composition law is not true. For example 6 = x2 + 5y2 for x = y = 1,
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but neither 2 nor 3 are of the form x2 + 5y2. However, we can explain this via Gauss’s theory of
quadratic forms, which in this case says the product of any two numbers of the form 2x2 +2xy+3y2

is of the form x2 + 5y2. Hence the question of which numbers are of the form x2 + 5y2 doesn’t quite
reduce to just determining which primes are of this form. In the second part of the course we will
use Gauss’s theory to determine which numbers are of the form x2 + 5y2 by studying the two forms
x2 + 5y2 and 2x2 + 2xy + 3y2 in tandem (as well as understanding where the second form came
from). In fact, we will see there is another approach to this question via Dirichlet’s mass formula,
which in this case tells us the number of solutions to x2 + 5y2 = n and 2x2 + 2xy + 3y2 = n. I will
conclude this section on binary quadratic forms by presenting illustrating how these forms can be
used to quantitatively study the failure of unique factorization in OQ(

√
−5), a very interesting but

largely neglectic topic. Some references for this section are [Cohn], [Cox], [Borevich–Shafarevich],
[Landau], [Hurwitz], [Dirichlet] and [Narkiewicz]. In addition, many books on quadratic forms cover
a large part of the material here, and some of the material in the next part.

The third and final part of the course is motivated by the theory of quadratic forms in n variables.
Some of the theory of binary quadratic forms carries over to the case of more variables, but some
crucial elements do not. We will not be attempting to develop a theory of quadratic forms in n
variables, but rather introduce one of the key elements in this theory, the Hasse-Minkowski principle.
Roughly, this principle says the following: an equation should have a solution in Z if and only if
it has a solution in Z/pkZ for every prime power pk. This statement is not true in general, but
is in special cases. To understand this principle, we’ll talk about valuations and p-adic numbers.
The Hasse-Minkowski principle can then be used to prove Gauss’s famous theorem about which
numbers are the sum of three squares. We will follow [Serre] for this. Another important use of
p-adic numbers is the modern formulation of higher reciprocity (higher than quadratic) laws. These
higher reciprocity laws are given by class field theory, which is typically considered the crowning
achievement in Algebraic Number Theory, most cleanly stated in the modern language of adèles.
Time permitting, we will conclude with a brief discussion of adèles, class field theory and higher
reciprocity laws. Some references this are [Ramakrishnan–Valenza], [Ono], [Kato–Kurokawa–Saito],
[Cohn2], [Cohn3]. See also any book on Class Field Theory.

This may sound like a rather ambitious plan, and it is. Number Theory is a very rich subject,
and one cannot learn even all the central topics of Algebraic Number Theory in a year long course.
Any of these three parts could easily form a one semester long course by themselves (though perhaps
the first or third more so than the second), and class field theory itself should be a year-long course.
Consequently, we will not pursue many topics as deeply as they may deserve (such as Dirichlet’s
Units Theorem), but I will mention important results and ideas throughout the text, which will
hopefully provide at least a good survey of the subject.

This course is not a standard course in number theory, which is the reason we are not following
a text. Part of this is due to the fact that the first semester was a mix of elementary and algebraic
number theory, whereas they are usually treated separately. But the main reason is my desire to
treat the theory of binary quadratic forms (Questions (0.1) and (0.2) as well as the second part
of the course), which is a very beautiful subject (and one of my interests, though not my primary
research focus), but largely neglected in most modern treatments of Algebraic Number Theory (e.g.,
[Neukirch], [Marcus], [Janusz], [Lang], [Stewart–Tall], [Murty–Esmonde]). Notable exceptions are
[Borevich–Shafarevich], [Cohn], and of course [Cox]. However [Borevich–Shafarevich] does not seem
appropriate as a text for this class, [Cohn] virtually only treats quadratic fields, and [Cox] already
assumes a fair amount of knowledge of algebraic number theory (he reviews it, but omits many
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proofs). Additionally, [Cohn] and [Cox] say nothing about p-adic numbers. Conversely most books
on quadratic forms do not seem to contain much algebraic number theory, and have a different focus
than I intend for the course.

Furthermore, while the bulk of the first and third part of the course are part of a standard course
in Algebraic Number Theory (usually without adèles), most Algebraic Number Theory courses in
my experience focus on building up general theory for a long time, often requiring sizable tangents
to develop the tools to prove theorems, before being able to get to many applications. While
we will treat general number fields throughout the course (and see places where we need them for
applications), we will in several places restrict our development of the theory to the case of quadratic
fields (though not to the extent of [Cohn]), such as with Minkowski’s theory or the class number
formula. One critique of this approach might be that one loses much depth this way, however I
believe we will gain at least as much as we lose, by being able to go that much deeper into the study
of quadratic fields and quadratic forms, thus gaining a more complete and global understanding of
the “quadratic” theory, and hopefully a better appreciation of the subject. And in the future, if you
need to understand some aspects of the general theory, it would be good to first understand what
happens in the simplest setting, that of quadratic fields.

In fact, it is with future aims in mind, that I want to spend a considerable amount of time
at the end of the semester on p-adic numbers and adèles. Specifically, they are (i) crucial to
understanding modern number theory, (ii) something you need to know about if you end up working
with Ameya Pitale, Alan Roche, Ralf Schmidt or myself, and (iii) something that comes up often in
the representation theory seminar. During the last week of the course, I will plan on giving survey
lectures about class field theory, higher reciprocity laws, and how this leads into the Langlands
Program, which is the general framework for most of the number theory research going on at OU
and OSU.

Finally, since we will be using primarily my notes and not a text, please let me know of any
possible errors or unclear portions you may find in the notes so I can address them.

I would like to thank my students for pointing out numerous errors and giving feedback. I hope
you know who you are, because I no longer remember who exactly helped me provided feedback.
Kudos also go to Keith Conrad, Filippo Alberto Eduardo and Victor Flynn for reporting other
errors.
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Part I

The first part

1 Number Fields

I will assume that every one is familiar with the material in the first year algebra sequence, notably
groups, rings, fields, ideals and Galois theory, as well as the material from Number Theory I, though
I will review some of the key definitions and results which the undergraduates may not be familiar
with, and perhaps the graduate students have forgotten. In this first section, we will go over the
basics of number fields, which will largely be a review of the second half of last semester, with some
generalizations of notions introduced in the context of quadratic fields. However some fundamental
notions will be new to us, such as discriminants. We will for the most part omit proofs of results
covered last semester (even if we only sketched the proof) or in a standard Algebra course. For
complete proofs, refer to any standard texts on Algebra and Algebraic Number Theory. Since the
material in this chapter should be largely familiar to you, and the point is to fill in some things we
missed last semester, we will go through this section rather quickly.

The presentation of the material in this chapter is based on [Stewart–Tall].

1.1 Algebraic Numbers

Let R[x] denote the ring of polynomials in x with coefficients in a ring R. We say p(x) ∈ R[x] is
monic if the leading coefficient of p(x) is 1. (All rings for us are commutative with 1.) By the
Fundamental Theorem of Algebra, any polynomial in Q[x] factors into linear factors in C. We say
α ∈ C is an algebraic number if it is the root of some p(x) ∈ Q[x] (or equivalently a polynomial in
Z[x], but then we can’t assume it’s monic). Without loss of generality we may assume p(x) is monic.
If p(x) is of smallest degree such that this is true, and we say p(x) is the minimum polynomial
of α (over Q), and the degree deg(α) of α defined to be the deg(p(x)). If in fact p(x) ∈ Z[x], we
say α is an algebraic integer.

Some basic facts from algebra are that
(i) the minimum polynomial p(x) of α is uniquely determined (which is why we make the monic

condition),
(ii) p(x) is irreducible over Q (and therefore Z if p(x) ∈ Z[x]), and
(iii) if q(x) ∈ Z[x] and q(α) = 0, then p(x)|q(x) (in Q[x] or Z[x] if p(x) ∈ Z[x]).

Lemma 1.1.1. Let α ∈ C. Then [Z[α] : Z] < ∞ if and only if α is an algebraic integer. In this
case

{
1, α, · · · , αm−1

}
is a Z-basis of Z[α] where m = deg(α).

This was Proposition 10.9 from last semester.

Lemma 1.1.2. Suppose α is an algebraic number. Then cα is an algebraic integer for some c ∈ Z.

Proof. Suppose the minimum polynomial for α is p(x) = xn+ an−1

bn−1
xn−1 + · · ·+ a1

b1
x+ a0

b0
where each

ai, bi ∈ Z. Let c = b0b1 · · · bn−1. Then p(yc ) = yn

cn + an−1

bn−1cn−1 y
n−1 + · · ·+ a1

b1c
y + a0

b0
. Multiplying by

cn, we see

q(y) = cnp(
y

c
) = yn +

an−1c

bn−1
yn−1 + · · · a1c

n−1

b1
y +

a0c
n

b0
∈ Z[y].

But q(cα) = cnp(α) = 0, so y is an algebraic integer.

6



Recall from algebra that if R is an integral domain (not the zero ring and has no zero di-
visors), we can form the smallest field F containing R by considering the set of fractions F ={
a
b : a, b ∈ R, b 6= 0

}
. This is called the field of fractions or fraction field of R.

Theorem 1.1.3. The set B of all algebraic integers form a subring of C, and the set A of all
algebraic numbers form its field of fractions.

We omitted the proof last semester, so here it is, in all its glory.

Proof. Note that by the Lemma 1.1.1, B consists precisely of all elements α ∈ C such that [Z[α] :
Z] < ∞. To show it is a subring of C, we want to show if α, β ∈ B, then so are α + β, α − β and
αβ. But these elements are all clearly in Z[α, β], and

[Z[α, β] : Z] = [Z[α, β] : Z[α]] · [Z[α] : Z] ≤ [Z[β] : Z] · [Z[α] : Z] <∞.

Since Z[α+ β], Z[α− β] and Z[αβ] are all contained in Z[α, β], they must all have finite degree.
To see that A is its field of fractions, one runs through the same argument for fields. Namely,

one shows that [Q(α) : Q] <∞ if and only if α is algebraic. The above argument shows A is a field.
Lemma 1.1.2 shows that any element of A is a quotient of two elements in B.

Exercise 1.1. Show by example that [Z[α, β] : Z[α]] need not equal [Z[β] : Z].

Definition 1.1.4. Let K be a subfield of C We say K is a number field if [K : Q] <∞. Its ring
of integers is OK = B ∩K.

From now on we let K denote a number field.

Proposition 1.1.5. K is the field of fractions of OK .

This follows from Lemma 1.1.2 as in the proof of Theorem 1.1.3.

Proposition 1.1.6. We have K = Q(α) for some algebraic integer α.

This is the Primitive Element Theorem from Galois theory. Here α is called a primitive
element for K (over Q).

Proposition 1.1.7. We have [K : Q] = [OK : Z].

Proof. Let α1, . . . , αn be a Z-basis for OK . By Lemma 1.1.2, any x ∈ K is a Q-linear combination
of α1, . . . , αn. Hence to see α1, . . . , αn is a Q-basis for K it suffices to show they are linearly
independent of Q. Suppose a1

b1
α1 + · · · + an

bn
αn = 0 for some ai, bi ∈ Z. Multiplying through by

b1b2 · · · bn, the fact that the αi’s are linearly independent over Z (and no bi = 0) implies each
ai = 0.

If L ⊆ C is a field containing K and [L : K] is finite, we say L is a finite extension of K of
degree [L : K]. Clearly this means L is also a number field since [L : Q] = [L : K] · [K : Q].

Corollary 1.1.8. If L is a finite extension of K, then [L : K] = [OL : OK ].

Proof. [L : K] = [L : Q]/[K : Q] = [OL : Z]/[OK : Z] = [OL : OK ].
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Suppose K is a quadratic field, i.e., [K : Q] = 2. Recall that we may write K = Q(
√
d) where

d ∈ Z is squarefree (and d 6= 1). Recall d squarefree means n2|d =⇒ n2 = 1.

Example 1.1.9. Suppose d ∈ Z is squarefree, d 6= 1, and let K = Q(
√
d). Then

OK =

{
Z[1+

√
d

2 ] d ≡ 1 mod 4

Z[
√
d] d ≡ 2, 3 mod 4.

If d > 0, we say K is a real quadratic field since K ⊆ R. There are infinitely many units
of OK , and they are generated by a fundamental unit ε = x + y

√
n (the smallest ε > 1 such that

N(ε) = x2 − ny2 = ±1) and −1.
If d < 0, we say K is an imaginary quadratic field since K 6⊆ R. Here there are only

finitely many units of OK , and precisely they are ±1,±i (the 4-th roots of unity) if d = −1; they are
±1,±ζ3,±ζ2

3 (the 6-th roots of unity) if d = −3; and they are ±1 (the 2-nd roots of unity) otherwise.

(Recall the units of a ring R are the set of invertible elements and they are a group under
multiplication.)

1.2 Some Galois theory

Let L/K be an extension of number fields of degree n, i.e., [L : K] = n. An embedding of L ↪→ C
is a field homomorphism from L into C, i.e., a map σ : L → C such that σ(x + y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y), σ(−x) = −σ(x) and σ(x−1) = σ(x)−1. Necessarily σ(0) = 0, σ(1) = 1, and
consequently σ fixes Q, i.e., σ(x) = x for each x ∈ Q.

Example 1.2.1. Let L = Q(i). A Q-basis for L is {1, i}. If σ : L ↪→ C is an embedding, it fixes
1, so it is determined by what it does to i. We must have σ(i)2 = σ(i2) = σ(−1) = −1 so i must
map to a square root of −1, i.e., either i or −i. One may check that both of these give embeddings,
σj : Q(i)→ C given by σ1(a+ bi) = a+ bi (the trivial embedding), and σ2(a+ bi) = a− bi (complex
conjugation).

The Galois group of L/K, denoted Gal(L/K) is the group of all embeddings of L ↪→ C which
fix (each element of) K. The Galois closure of L/K is the smallest extension L′ of L such that
each σ ∈ Gal(L/K) maps into L′. We say the extension L/K is Galois if L′ = L.

Example 1.2.2. K = Q and L = Q(i). Every embedding of L into C fixes K, so Gal(L/K) =
{σ1, σ2} from the example above. Every embedding lies in L, so L/K is Galois.

By the Primitive Element Theorem, we may write L = K(α) where α is an algebraic integer.
Let f(x) ∈ K[x] be the minimum polynomial for α over K. This means f(x) is the irreducible monic
polynomial of smallest possible degree with coefficients in K (in fact OK since α is an integer) such
that f(α) = 0. It is not difficult to show that deg(f(x)) = n (in fact, we already did in the case
K = Q).

Example 1.2.3. K = Q(
√

2) and L = Q( 4
√

2) = K(α) where α2 =
√

2 ∈ K. The minimum
polynomial for α over K is f(x) = x2 −

√
2. (Contrast this with the minimum polynomial for α

over Q: p(x) = x4 − 2, of degree 4).

Exercise 1.2. In the above example, show L/K is Galois, but L/Q is not.
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Theorem 1.2.4. Suppose L = K(α) and f(x) is the minimum polynomial of α over K. The n
roots of f(x) are all distinct, call them α = α1, α2, . . . , αn. Every embedding of L ↪→ C permutes
the roots f(x), and Gal(L/K) acts transitively on the roots. Conversely, every embedding L ↪→ C is
uniquely determined by the way it permutes the roots of f(x). Therefore, Gal(L/K) is isomorphic
to a transitive subgroup of Sn. Further the Galois closure of L/K is L′ = K(α1, α2, . . . , αn), i.e.,
L/K is Galois if and only if L contains all the root of f(x).

See any reference on Galois theory. Here Sn denotes the symmetric group on n-letters, i.e., the
permutations of {1, 2, . . . , n}. Note that L′ = K(α1, . . . , αn) is often called the splitting field of
f(x) (over K), since it is the smallest field such that f(x) splits into linear factors.

Corollary 1.2.5. Any quadratic extension L/K (i.e., [L : K] = 2) is Galois.

Proof. Write L = K(α) and f(x) as the minimum polynomial for α over K. It is immediate from
the quadratic formula that once L contains one root of f(x), it contains the other. Hence L/K is
Galois by the above theorem.

Example 1.2.6. Let n > 0. The splitting field for f(x) = x2 +n over K = Q is L = Q(
√
−n). This

also splits the quadratic form x2 + ny2. The extension L/K is Galois by the above corollary, and
the Galois group is given by the maps σ1(a+ b

√
−n) = a+ b

√
−n and σ2(a+ b

√
−n) = a− b

√
−n.

The map σ1 corresponds to the trivial permutation of the roots ±
√
−n of f(x), and σ2 interchanges

these two roots.

Exercise 1.3. Let K = Q and L = Q( 3
√

2). Determine the splitting polynomial f(x) for α = 3
√

2
over K. Using the above theorem, answer the following. (i) Is L/K Galois? If not, find the Galois
closure. (ii) Determine Gal(L/K) explicitly (either as embeddings or permutations of roots of f(x).

All of the above is covered in any standard lectures on Galois theory (though we haven’t stated
the main theorems of Galois theory), but now we will be introducing notions that are more properly
a part of a course on Algebraic Number Theory.

Definition 1.2.7. Let α ∈ L. The conjugates of α in L/K are the elements ασ = σ(α) where
σ ∈ Gal(L/K). The norm of α from L to K is NL/K(α) =

∏
σ∈Gal(L/K) α

σ and the trace of α
from L to K is TrL/K(α) =

∑
σ∈Gal(L/K) α

σ.

In the case K = Q and L is understood, we simply write N(α) and Tr(α) for NL/K(α) and
TrL/K(α). It is a standard fact from Galois theory that α ∈ L in fact lies in K if and only if ασ = α
for each σ ∈ Gal(L/K).

Warning: If L/K is not Galois, then the conjugates of α in L/K may not lie in L. Precisely,
if L/K is not Galois, then there exist σ ∈ Gal(L/K) such that the image of σ is not contained in
L. Hence there is some α ∈ L such that the conjugate σ(L) 6∈ L. What is true is that they always
lie in the Galois closure L′ of L, by definition of the Galois closure.

Example 1.2.8. Let L = Q(
√
d) and K = Q. For α = a+ b

√
d ∈ L, NL/K(α) = N(α) = a2 − db2

and TrL/K(α) = Tr(α) = 2a.

Lemma 1.2.9. The norm map is multiplicative and the trace map is additive. For α ∈ L, NL/K(α),
TrL/K(α) ∈ K. Further, if α ∈ OL, then NL/K(α) ∈ OK and TrL/K(α) ∈ OK .
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Proof. The first statement is immediate from the definitions. The second statement is true since
the product and sum of all the conjugates of α are invariant under Gal(L/K), and therefore lie in
K. For the last statement, observe α is an algebraic integer if and only if each of its conjugates are
(since they all have the same minimum polynomial).

Corollary 1.2.10. Let α be an algebraic number of degree 2 and L = Q(α). Then α is an algebraic
integer if and only if NL/Q(α),TrL/Q(α) ∈ Z.
Proof. The ⇒ direction follows from the lemma. The other direction follows from the fact that the
minimum polynomial of α is x2 − TrL/Q(α)x+NL/Q(α), which was an exercise last semester.

Note that this is not true for algebraic numbers of higher degree. In general if α is of degree
n, one needs to consider the symmetric functions τj : L → Q where L = Q(α) and τj(x) is the
sum of all products of j conjugates. For instance if x1 = x, x2, . . . , xn denote the n conjugates (not
necessarily distinct numbers) of x, then

τ1(x) =x1 + x2 + . . .+ xn = TrL/Q(x)

τ2(x) =x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·x2xn + · · ·+ xn−1xn
...

τn(x) =x1x2 · · ·xn = NL/Q(x).

Then one can show the minimum polynomial for α is

xn + (−1)n−1τ1(α)xn−1 + · · · − τn−1(α)x+ τn(α).

Exercise 1.4. Suppose α, β ∈ L are conjugates in L/K. Show NL/K(α) = NL/K(β) and TrL/K(α) =
TrL/K(β).

Exercise 1.5. Let α ∈ OK . Prove α is a unit of OK if and only if NK/Q(α) = ±1.

Exercise 1.6. Write down a Q-basis for K = Q( 3
√

2). For each α in this basis, compute NK/Q(α)
and TrK/Q(α).

Exercise 1.7. Let K = Q(
√

2) and L = K(
√

3) = Q(
√

2,
√

3). Write down a Q-basis for L.
Compute Gal(L/K) and Gal(L/Q). (Hint for those who haven’t seen Galois theory before: it’s not
so easy to find a primitive element for L/Q and determine its minimum polynomial, so it’s better
to just use the definition of the Galois group. Of course, if you know Galois theory, there are other
ways to determine Gal(L/Q) and you may do it any you like.) For each α in this basis compute
NL/K(α) and NL/Q(α). Check that NL/Q(α) = NK/Q(NL/K(α)).

One thing you may have noticed in the examples and exercises above is that Gal(L/K) tends to
equal [L : K]. In fact this is always true and is one of the standard results in Galois theory, though
you may have only proved it for Galois extensions.

Proposition 1.2.11. |Gal(L/K)| = [L : K].

Proof. Write L = K(α). Then 1, α, . . . , αn−1 is a Q-basis for K. Thus an embedding σ : L → C
which fixes every element of K is determined by what it does to α.

Let f(x) be the minimum polynomial of α, which has degree n = [L : K]. Since σ is a field
homomorphism, σ(α) must also have minimum polynomial f(x). Since f(x) has n distinct roots,
α = α1, α2, . . . , αn, there are n possibilities for σ ∈ Gal(L/K) given by σ(α) = αi. One formally
checks that each of these give an embedding into C.
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1.3 Discriminants

Let K be a number field, n = [K : Q]. Then |Gal(K/Q)| = n. Write Gal(K/Q) = {α1, . . . , αn}.

Definition 1.3.1. Let {α1, . . . , αn} be a Q-basis for K. The discriminant of {α1, . . . , αn} is

∆[α1, . . . , αn] = det (σi(αj))
2 .

If α1, . . . , αn is a Z-basis for OK , we define the discriminant of K to be ∆K = ∆[α1, . . . , αn].

If R is a ring, we define the Mn(R) to be the set of n×n matrices with coefficients in R. This is
also a ring, with the obvious identity element, and the invertible elements of Mn(R) form a group
under multiplication, denoted by GLn(R), and called the general linear group of rank n over R.
If R is an integral domain, then A ∈Mn(R) lies in GLn(R) if and only if det(A) is a unit in R.

Lemma 1.3.2. Let {α1, . . . , αn} and {β1, . . . , βn} be two Q-bases for K. Then we can write
β1

β2
...
βn

 = C


α1

α2
...
αn


for some C ∈ GLn(Q). Then ∆[β1, . . . , βn] = det(C)2∆[α1, . . . , αn].

Further, if {α1, . . . , αn} and {β1, . . . , βn} are Z-bases (also called integral bases) for OK , then
we may take C ∈ GLn(Z). in the above. Consequently, ∆[β1, . . . , βn] = ∆[α1, . . . , αn], i.e., ∆K

does not depend on the choice of the integral basis for OK .

Proof. The fact that there is some such C is elementary linear algebra. The equation about deter-
minants follows from (σi(βj)) = C (σi(αj)), which holds because each σi fixes Q. (If this isn’t clear
to you, just write out the equations βk =

∑
cjkαj for, say n = 2 or 3, and apply each σi.)

The second paragraph follows in the same way. Here we note that if C ∈ GLn(Z), then det(C) =
±1, so det(C)2 = 1. This provides at least one explanation for why we look at the square of the
determinant in the definition of the discriminant—so that we can define ∆K as an invariant of a
number field, independent of choice of basis for OK .

Exercise 1.8. A priori, the discriminant ∆[α1, . . . , αn] is defined for an ordered Q-basis α1, . . . , αn
of K. Show that the above lemma implies this discriminant does not depend upon the order, i.e.,
for any τ ∈ Sn, show ∆[ατ(1), . . . , ατ(n)] = ∆[α1, . . . , αn].

Note: the quantity det(σi(αj)), which is one of the square roots of the discriminant, is called
the different of {α1, α2, · · · , αn}. We will not use the different in this course (I don’t think), but
you may see come up if it you look at other texts.

A note on terminology: one can form the different and discriminant for an arbitrary collection
of n integers α1, . . . , αn. Then the discriminant and different are nonzero if and only if α1, . . . , αn
are linearly independent, i.e., form a Q-basis for K. Furthermore, if α1, . . . , αn and β1, . . . , βn have
different discriminants then the submodules M = {

∑
niαi : ni ∈ Z} and N = {

∑
niβi : ni ∈ Z} are

distinct.
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Example 1.3.3. Let d 6= 1 be a squarefree integer and K = Q(
√
d). Suppose d ≡ 2, 3 mod 4 so

OK = Z[
√
d]. We can take {α1, α2} =

{
1,
√
d
}

as a choice for an integral basis for OK . We can

write Gal(K/Q) = {σ1, σ2} where σ1 is trivial and σ2 permutes
√
d and −

√
d. Hence the matrix

(σi(αj)) =

(
1
√
d

1 −
√
d

)
,

which has determinant −2
√
d. Hence the discriminant of K is ∆K = ∆[1,

√
d] = 4d.

Exercise 1.9. Let d 6= 1 be a squarefree integer and K = Q(
√
d). Suppose d ≡ 1 mod 4. Compute

the discriminant ∆K of K.

Exercise 1.10. Let K be a quadratic field of discriminant ∆. Show
(i) ∆ ≡ 0, 1 mod 4,
(ii) K is uniquely determined by ∆, and
(iii) we can write

OK =

{
x+ y

√
∆

2
: x, y ∈ Z, x ≡ 0 mod 2

}
if ∆ ≡ 0 mod 4, and

OK =

{
x+ y

√
∆

2
: x, y ∈ Z, x ≡ y mod 2

}
if ∆ ≡ 1 mod 4.

Part (ii) of the above exercise means that the discriminant is a complete invariant for quadratic
fields. The point of part (iii) is that, while there is a fundamental difference between OK when
∆K ≡ 0 mod 4 and ∆K ≡ 1 mod 4 (which correspond to d 6= 1 mod 4 and d ≡ 1 mod 4 for
K = Q(

√
d) with d squarefree), we can always write an element of OK of the form x+y

√
∆

2 with
some simple congruence conditions on x, y. This will be useful when we want to treat both the
∆ ≡ 0 mod 4 and the ∆ ≡ 1 mod 4 cases together.

Now let’s return to discriminants of general number fields.

Lemma 1.3.4. Let α1, . . . , αn be a Q-basis for K. Then ∆[α1, . . . , αn] ∈ Q\ {0}. If α1, . . . , αn ∈
OK , then ∆[α1, . . . , αn] ∈ Z\ {0}.

Proof. By the previous lemma, the discriminants of any two bases for K differ by rational squares.
Hence it suffices to check that it is true for a single Q-basis of K. Then the second statement follows
from the first, since the discriminant is then a polynomial expression of algebraic integers, and thus
an algebraic integer itself.

We can write K = Q(α) where α is some algebraic number (integer if we like) of degree n. Then{
1, α, α2, . . . , αn−1

}
is a Q-basis for K. Let α1 = α, α2, . . . , αn denote the (distinct) conjugates of
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α. Then the conjugates of αi are αi1 = αi, αi2, . . . , α
i
n. Hence the determinant of this basis is the

square of the discriminant of

A =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

...
...

...
...

1 αn α2
n · · · αn−1

n

 .

This matrix is a Vandermonde matrix, and it is a standard algebra exercise that this has determinant∏
1≤i<j≤n(αj − αi). (The determinant is a polynomial in the αi’s, and clearly it is zero if some

αi = αj , so each polynomial αj − αi divides the determinant. Then one counts the degree of the
polynomial, to show that this is correct up to a constant. Comparing coefficients of one of the terms
gives the Vandermonde determinant formula. You could also prove this by induction, but the above
argument seems simpler.)

Hence ∆[α1, . . . , αn] =
∏
i 6=j(αj − αi). Note any σ ∈ Gal(K/Q) simply permutes the terms in

this product, i.e., ∆[α1, . . . , αn] is Gal(K/Q)-invariant, and thus in Q. It is clear from the product
expression that it is nonzero.

Exercise 1.11. Verify the Vandermonde determinant formula given above for n = 2 and n = 3.

While, the determination of OK was simple for quadratic fields K, in general it is not so easy.
There are algorithms to determine OK , but we will not focus on this problem in general, as we will
only need explicit determinations of OK in special cases. However, we will briefly indicate how one
can use discriminants to help find a ring of integers. It suffices to find an integral basis for OK .

1. Guess a possible integral basis {β1, · · · , βn} for OK . Suppose {α1, . . . , αn} is an actual
integral basis for OK . Then ∆[β1, · · · , βn] = det(C)2∆[α1, . . . , αn] = det(C)2∆K . In other words,
∆[β1, · · · , βn] is a square (in Z) times ∆K . Hence if ∆[β1, . . . , βn] is squarefree, then {β1, . . . , βn}
is an integral basis for OK .

2. If ∆[β1, · · · , βn] is not squarefree, {β1, · · · , βn} may still be a basis (see Example 1.3.3 above),
but if it is not, then OK contains an integer of the form 1

p(c1β1 + c2β2 + · · ·+ cnβn) for some cn ∈ Z
and p is some prime such that p2|∆[β1, · · · , βn]. Check to see if any numbers of this form give any
new algebraic integers not generated by β1, . . . , βn. If so, suitably modify the choice of β1, . . . , βn
and repeat. If not, then β1, . . . , βn is an integral basis of OK .

Exercise 1.12. In the last section, we considered general extensions of number fields L/K. One
reason you might want to do this is the following. We want to use K = Q(

√
−5) to study the

form x2 + 5y2. However OK does not have unique factorization. But we can embed K in the field
L = Q(

√
−5, i) which does have unique factorization. Now one wants do determine OL. A first

guess might be
{

1,
√
−5, i,

√
5
}
is an integral basis for OL. It is certainly a Q-basis for L. Compute

the discriminant of this Q-basis. Can you determine OL?

However we will primarily be concerned with other applications of discriminants this semester,
most immediately to ideals in the next section.

Discriminants are a fundamental invariant of number fields. Another thing they provide is
natural way to at least partially order number fields. (There are only finitely many fields of a fixed
discriminant.) The quadratic fields Q(

√
d) can easily be ordered by d (which actually is a function

of the discriminant, but how can one order fields of a more complicated form, such as Q(
√

3,
√
−19)
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and Q(
√
−7,
√

11)?) Once one has some sort of ordering, it is meaningful to ask questions like what
percentage of fields (of a certain type) have class number 1 or 2, or more generally, how many fields
up to a certain point satisfy Property X?

We also remark that there is a geometric interpretation of determinants (and differents), which
comes from the geometric interpretation of discriminants. For now, we will just mention it in
the simplest case K = Q(

√
−d) where d > 0 squarefree. Then if α, β is a Q-basis for K, α and

β generate a lattice Λ = 〈α, β〉 = {mα+ nβ : m,n ∈ Z}. Then vol(C/Λ) = 1
2

√
−∆[α, β]. In

particular, ∆K = −4vol(C/OK)2. We can state an analogue of this for arbitrary number fields
when we study the geometry of numbers.

1.4 Ideals

Let K be a number field. Recall I is an ideal of OK if I is a nonempty subset of OK which is
closed under addition and multiplication by OK . The norm of an ideal I of OK is N(I) = |OK/I|.

Lemma 1.4.1. For any nonzero ideal I of OK , the norm N(I) = |OK/I| is always finite. Fur-

thermore, if β1, . . . , βn is a Z-basis for OK , then N(I) =
√

∆[β1,...,βn]
∆K

.

Recall a free abelian group of rank n is a group isomorphic to Zn. For the proof, we use
the fact that if A is a free abelian group of rank n, and B is a subgroup of A, then B is also free
abelian of rank ≤ n.

Proof. Let n = [K : Q]. Then OK is a free abelian group of rank n (w.r.t. addition). We can regard
I as a subgroup of OK , which must also be free of rank ≤ n. Let i ∈ I be nonzero. Then (OKi,+)
is a (free abelian) subgroup of (I,+) of rank n, hence I has rank n.

Now we let β1, · · · , βn be a Z-basis for I. Then there is a Z-basis α1, · · · , αn of OK such that
for each i we can write βi = ciαi for some ci ∈ Z. Then it is clear OK/I =

∏
Cci , where Cr denotes

the cyclic group of order r. In particular N(I) is finite.
Moreover, we have 

β1

β2
...
βn

 =


c1

c2

. . .
cn



α1

α2
...
αn

 .

By Lemma 1.3.2, we have ∆[β1, . . . , βn] = N(I)2∆[α1, . . . , αn] = N(I)2∆K . This gives the result
since N(I) ≥ 0.

Note that the norm of the zero ideal is infinite as we have defined it, though it may make more
sense to define it to be 0 in light of the the next result, which relates norms of ideals to norms of
elements. In any case, since we have no particular reason to work with the zero ideal, in order to
simplify statements we will from here on, assume all our ideals our nonzero, unless explicitly
stated otherwise.

Proposition 1.4.2. Suppose I = (α) is a principal ideal of OK . Then N(I) = |NK/Q(α)|.

Here the norm on the left is the ideal norm, and the norm on the right is the norm of an element.
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Proof. Let α1, . . . , αn be a Z-basis for OK . Then β1 = αα1, . . . , βn = ααn is a Z-basis for I. Write
Gal(K/Q) = {σ1, . . . , σn}. Note

∆[β1, . . . , βn] = det

σ1(α)σ1(α1) · · · σ1(α)σ1(αn)
...

. . .
...

σn(α)σn(α1) · · · σn(α)σn(αn)


2

= det


σ1(α)

σ2(α)
. . .

σn(α)


2

det

σ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)


2

= NK/Q(α)2∆[α1, . . . , αn] = NK/Q(α)2∆K .

Now apply the previous lemma.

This implies that the ideal norm is multiplicative, at least for principal ideals. Of course, we want
to know it’s multiplicative for all ideals, and this basically follows from some simple isomorphism
theorems, but at one point, to keep our argument as simple as possible, we will use fractional ideals.
This is justified by Theorem 1.4.4 below (which we have already given last semester), whose proof
does not rely on this result. Recall that the product of two ideals I and J , is the ideal generated
by all elements of the form ij for i ∈ I and j ∈ J , i.e., IJ = {

∑
imjm : im ∈ I, jm ∈ J }.

Proposition 1.4.3. Let I, J be ideals of OK . Then N(IJ ) = N(I)N(J ).

Proof. By the ring isomorphism theorem, OK/I ' (OK/IJ )/(I/IJ ). (Just think about the case
where OK = Z, I = (m),J = (n). Then this says Z/mZ ' (Z/mnZ)/(mZ/mnZ).) The details are
in the exercise below. Hence N(IJ ) = |I/IJ | ·N(I).

Now it suffices to show OK/J ' I/IJ , say as abelian groups. Consider the map φ : OK →
I/IJ given by φ(α) = αI + IJ for α ∈ OK . It is clear it is a group homomorphism. Note
φ(α) = IJ ⇐⇒ αI + IJ = IJ ⇐⇒ αI ⊆ IJ , which, multiplying by I−1 is equivalent to
αOK ⊆ J , which is equivalent to α ∈ J . Hence ker(φ) = J . On the other hand, it is clear φ is
surjective. Thus it induces the desired isomorphism φ : OK/J → I/IJ .

Exercise 1.13. Show the map φ : OK/IJ → OK/I given by α + IJ 7→ α + I for α ∈ OK is
well-defined (i.e., φ does not depend on the choice of coset representative α ∈ α + IJ ), has kernel
I/IJ , and is surjective. This gives the isomorphism OK/I ' (OK/IJ )/(I/IJ ) claimed above.

If I ⊆ K such that aI is an ideal of OK for some a ∈ OK , we say I is a fractional ideal of OK .
Moreover a fractional or ordinary ideal I is called principal, if it is generated by a single element,
i.e., if it is of the form aOK for some a ∈ K. Denote by Frac(OK) the set of (nonzero) fractional
ideals of OK , and Prin(OK) the set of (nonzero) principal fractional ideals of OK . Multiplication
for fractional ideals is defined the same as for ordinary ideals.

Theorem 1.4.4. Frac(OK) is an abelian group under multiplication, and Prin(OK) is a subgroup.

If I, J are ideals of OK , we say J divides I (J |I) if J ⊇ I, from which one can conclude from
the above theorem that I = JJ ′ for some ideal J ′. An ideal I of OK is proper if I 6= OK . We
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say a proper ideal p is prime if p|IJ implies p|I or p|J (technically, the zero ideal is prime, but
we are ignoring the zero ideal), and it is maximal if I|p implies I = p or I = OK .

Recall that p is prime if and only if OK/p is an integral domain, and p is maximal if and only
if OK/p is a field. (Remark: this kind of result is one reason we don’t allow for a field to have just
one element.) Since every finite integral domain is a field, one is able to conclude every (nonzero)
prime ideal is maximal and vice versa.

Theorem 1.4.5. (Prime ideal factorization) Let I be a proper ideal of OK . Then I = p1 · · · pr
where the pi’s are prime ideals of OK . Moreover the pi’s are determined uniquely up to ordering.

We proved these theorems last semester, modulo a couple of details about the first theorem. If
you want to fill in these details for yourself, you can try to work it out yourself from the Chapter
12 notes from last semester, or see any text on Algebraic Number Theory, such as [Stewart–Tall].

Definition 1.4.6. The quotient group Frac(OK)/Prin(OK) is called the class group of K, and
denoted Cl(OK) or ClK . The size of the class group is called the class number of K, and denoted
by hK .

Corollary 1.4.7. OK has unique factorization if and only if hK = 1.

Proof. Note hK = 1 means OK is a PID. Since every PID is a UFD (from algebra or last semester),
the ⇐ direction holds.

To prove the ⇒ direction, suppose OK has unique factorization. Suppose p is a prime ideal of
OK . Let n ∈ p and n = α1 · · ·αk be unique factorization of n into (non-unit) irreducibles. Note
each αi satisfies the prime divisor property by unique factorization, each αi is a prime element
of OK , and therefore each (αi) is a prime ideal. Hence (n) = (α1)(α2) · · · (αk) is the prime ideal
factorization of (n).

On the other hand, since p|(n), p must equal one of the (αi)’s by uniqueness of prime ideal
factorization. Hence every prime ideal of OK is principal. Then by prime ideal factorization again,
every ideal must be principal.

We mentioned last semester that there are only finitely many imaginary quadratic fields with
unique factorization, and conjecturally infinitely many such real quadratic fields. We will a bit more
talk more about this later, but first we need a way to compute the class group or class number of a
field. In fact, perhaps even before that, we want to know the class number is finite. The standard
proof for this is via Minkowski’s theory of the geometry of numbers, and it will in fact give us a bound
on the class number, which will in turn allow us to compute the class group in explicit examples. In
fact, to get an idea of how one can do such a thing, you may want to look at the Chapter 12 notes
from last semester, where, following Stillwell, I prove directly that hQ(

√
−5) = 2, though we didn’t

have a chance to cover it in lecture last semester. The proof via Minkowski’s theorem is somewhat
less direct, and to keep things as simple as possible, we will only give a complete proof in the case
of quadratic fields. A more sophisticated proof of the finiteness of the class group is via the theory
of p-adic numbers and adèles which we will develop in Part III. Time permitting, we will give this
proof in the 3rd part of the course for general number fields.

Another way to compute the class number is to use a formula of Dirichlet, which we will turn to
after Minkowski’s bound. An alternative way to compute the class number and group for quadratic
fields will be given by Gauss’s theory of binary quadratic forms in Part II (which historically came
first).
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1.5 Lattices

Before explaining Minkowski’s geometry of numbers, we need to know some basic facts about lattices.

Definition 1.5.1. A (complete) lattice Λ in Rn is a subset of Rn of the form 〈v1, v2, . . . , vn〉 =
{
∑
aivi : ai ∈ Z} such that v1, . . . , vn ∈ Rn are linearly independent over R. The set v1, . . . , vn is

called a basis for Λ (it is a Z-basis). As both Rn and Λ are abelian groups under addition, we let
Rn/Λ denote the quotient group. A fundamental domain for Λ (or Rn/Λ) is a connected, locally
convex∗ Ω of Rn such that Ω contains exactly one element from each coset of Rn/Λ.

In other words, the (complete) lattices in Rn are the Z-spans of bases of Rn. The adjective
complete refers to the fact that the number of basis elements of the lattice is maximal. An incomplete
lattice of Rn would be the Z-span of a basis of a proper subspace of Rn. However, for us, all lattices
will be complete unless stated otherwise.

Note a lattice is a free abelian subgroup of Rn of rank n, but not all free abelian subgroups of
rank n are lattices. For example, Z[

√
2] ⊆ R is a free abelian subgroup of R2 of rank 2 (embedding

R in R2), generated by 1 and
√

2, but not a lattice since 1 and
√

2 are not linearly independent over
R.

The main idea with fundamental domain is that it is a subset of Rn which looks like the quotient
group Rn/Λ. More precisely, it is a connected subset of Rn comprising exactly one representative
from each coset of Rn/Λ. The condition of local convexity is just to avoid pathological examples of
fundamental domains (see examples below). In any case, it won’t be important for us to understand
the subtleties of what kinds of sets make up fundamental domains, but rather just the basic idea of
what one is, and understanding what the “standard” fundamental domain is. Hopefully this should
be clear when we look at the cases in R1 and R2.

It is a basic fact that any fundamental domain for Λ has the same volume (length in dimension
1, area in dimension 2). This volume is called the volume (or covolume) of the lattice Λ (or
more properly the quotient R/Λn), denoted vol(Λ) (or more properly vol(Rn/Λ)). (To be formally
complete, we can get away without proving this fact about all fundamental domains having the
same volume by defining the volume of the lattice to be the volume of the standard fundamental
domain, defined below.) If Λ is an incomplete lattice, then Rn/Λ will have will have infinite volume.

Example 1.5.2. Since any free abelian group of rank n is isomorphic, as an abelian group, to Zn,
the most obvious example of a lattice in Rn is Zn. The standard fundamental domain for Zn is
Ω = [0, 1)n ⊆ Rn. It should be clear any element of Rn is a Zn translate of exactly one element in
Ω. It is obviously connected and convex, therefore locally convex. It is clear vol(Λ) = 1.

While all lattices of Rn are isomorphic as abelian groups, they also have an inherent geometry
coming from Rn, providing more structure. We will not need this, but just to clear up terminology,
we will only say two lattices of Rn are isomorphic as lattices if they (or equivalently, their fundamen-
tal domains) have the same shape and size—precisely, they will be isomorphic if one is the image of
the other by an isometry (distance preserving map) of Rn. In linear algebra, you may have learned
that the (linear) isometries of Rn are precisely the elements of O(n) =

{
A ∈ GLn(R) : AtA = I

}
,

the real orthogonal group of rank n. This means that two lattices of Rn are isomorphic if and only
if (a basis of) one can be transformed into (a basis of) the other by an element of O(n).
∗Locally convex means if two “nearby” points are in the set, then the line between them is in the set.
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Example 1.5.3. As a special case of the above example with n = 1, Z is a lattice in R, as is Λk = kZ.
Notice that Λk = Λk′ if and only if k = −k′. These are all the lattices in R, in 1− 1 correspondence
with R>0, parameterized by this number k. A fundamental domain for R/Λk (sometimes also referred
to as R mod k) is [0, k). In fact any half-open interval of length k is a fundamental domain for Λk,
and there are no other fundamental domains because of the connectedness requirement. We think of
R/Λk as the interval [0, k] with the endpoints glued, hence topologically it is a circle. Geometrically,
its length is vol(Λk) = k.

Example 1.5.4. A lattice in R2 is determined by two generators, u = (x1, y1) and v = (x2, y2),
provided they are linearly independent. Precisely, the lattice Λ = 〈u, v〉 generated by u and v is Λ =
{mu+ nv : m,n ∈ Z} ⊆ R2. The standard fundamental domain for Λ is Ω = {au+ bv : a, b ∈ [0, 1)}.
In other words, the standard fundamental domain for Λ is the interior of the parallelogram deter-
mined by 0, u, v and u + v, together with half of the boundary (since opposite boundary points are
equivalent modulo Λ, we can only include half of them, and one of the corners). Any R2-translate
of Ω is also a fundamental domain for Λ.

We may think of the quotient group R2/Λ as the fundamental domain (parallelogram) Ω, with
the addition of two vectors being the sum in the fundamental domain, and if the vector lies outside
of Ω, we let it wrap it around the edges of the parallelogram Pacman-style so the sum lies again in
Ω. In other words, we think of R2/Λ as the parallelogram Ω, with opposite sides glued. Topologically
this is a torus.

Example 1.5.5. Let a, b > 0. The volume of the lattice Λa,b = 〈(a, 0), (0, b)〉 is ab, since a fun-
damental domain is a rectangle with corners 0, (a, 0), (0, b), (a, b) (excluding appropriate bound-
ary points). Two of these rectangular lattices Λa,b and Λc,d will be isomorphic if and only if
{a, b} = {c, d}. Hence there are infinitely many non-isomorphic rectangular lattices of volume 1
given by Λa, 1

a
.

To generalize the above examples, the standard fundamental domain for Λ = 〈v1, v2 . . . , vn〉
(or more properly for the basis v1, . . . , vn) is Ω = {

∑
aivi : ai ∈ [0, 1)}. It is straightforward to

show this is in fact a fundamental domain. Then Rn/Λ looks like an n-dimensional parallelogram
(parallelopiped?) and topologically is an n-dimensional torus (the product of n circles). (To be
complete, if we define volume of a lattice as the volume of a standard fundamental domain, one
should show that any two bases of Λ are related by an element of GLn(Z). Then, expressing the
volumes of standard fundamental domains as determinants, one can conclude that the volume is
independent of the choice of basis.)

Exercise 1.14. Consider the lattice Λ = 〈u = (1, 0), v = (1
2 ,
√

3
2 )〉 in R2. Sketch the standard

fundamental domain for {u, v} compute its volume. Write down 2 other bases {u1, v1}, {u2, v2} for
Λ that do not just differ by sign (i.e., {u, v} 6= {±ui,±vi} and {u1, v1} 6= {u2, v2}). Sketch the
standard fundamental domains for {u1, v1} and {u2, v2} and check they have the same volume.

Exercise 1.15. Let Λ = 〈u, v〉 be a lattice in R2 such that Λ ⊆ Z2. Let Ω be the standard funda-
mental domain for the basis {u, v} of Λ. Show the volume of R2/Λ is the number of integral points
in Ω, i.e., vol(R2/Λ) = |Ω ∩ Z2|.

Example 1.5.6. Consider the lattice Z2 in R2. A non-rectangular fundamental domain may be
constructed as follows. Start with a standard fundamental domain and remove a semicirclular shape
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from one of the sides, then glue this shape onto the opposite side. (Draw a picture). This is no
longer convex, but it is still locally convex.

Now here is a non-example of a fundamental domain, which satisfies all properties except local
convexity. Let Ω be the union of line segments Ly for 0 ≤ y < 1 where Ly is the line from (0, y)
(inclusive) to (1, y) (exclusive) if y is rational and to (−1, y) (exclusive) if y is irrational. Then it
is clear Ω contains exactly one representative from each coset of R2/Z2, and it is connected since
it is a union of horizontal line segments which are joined by the y axis, but it is not locally convex.
(Think why, draw a picture.)

Now to apply this to ideal theory, we need to know Minkowski’s Theorem. Recall X ⊆ Rn is
called symmetric if X = −X.

Theorem 1.5.7. (Minkowski) Let Λ be a lattice in Rn and X a bounded symmetric convex subset
of Rn. If vol(X) > 2nvol(Rn/Λ), then X contains a nonzero point of Λ.

Proof. (It may be helpful to draw a picture for n = 2.) Let L be the lattice L = 2Λ. It is clear
vol(Rn/L) = 2nvol(Rn/Λ), so vol(X) > vol(Rn/L). Thus, if Ω is a fundamental domain for Rn/L,
the natural map from Rn to Ω cannot be injective when restricted to X. Thus there must be two
points x1, x2 ∈ X such that x1 ≡ x2 mod L (i.e., they map to the same point in Ω), i.e., x1−x2 ∈ L.
Since X is symmetric −x2 ∈ X. Then convexity implies 0 6= 1

2x1 − 1
2x2 ∈ X ∩ Λ.

Two classical applications of Minkowski’s theorem are that it can be used to prove Fermat’s
two square theorem or Lagrange’s four square theorem. See [Stewart–Tall] for both proofs, or the
Chapter 8 notes from last semester for the proof of the four square theorem. However, we are more
interested in the applications to ideals in the following sections.

1.6 The geometry of numbers: the quadratic case

What Minkowski termed the geometry of numbers is most plain to see in the imaginary quadratic
case. Let K = Q(

√
−d) with d > 0 squarefree. Then OK is a lattice in C ' R2. Hence, any ideal

of OK is a lattice in C ' R2.
In fact, even if K = Q(

√
d) is a real quadratic field, we may think of OK as a lattice in R2. (As

we remarked earlier with Z[
√

2], even though K ⊆ R, OK is not a lattice in R, so Minkowski’s idea
was to embed K into R2.) The most naive way to do this is to regard an element a + b

√
d ∈ K

as the element (a, b
√
d) in R2. In other words, we are separating out the rational and irrational

components on the x- and y- axes of R2, just like we separate the real and imaginary components
of Q(

√
−d) or C onto the x- and y- axes in the complex plane picture.

We can unify these two cases as follows. Suppose K = Q(
√
d) is a real or imaginary quadratic

field, i.e., d > 1 or d < 0 and assume d squarefree. Then we can embed K in R2 by the map
φ : K → R2 such that φ(a+ b

√
d) = (a, b

√
|d|) for a, b ∈ Q. In this picture OK , and thus any ideal

of OK , is a lattice of R2.
We will work out the part of Minkowski’s theory relevant for us in the case of quadratic fields. In

the interest of time, we will just state the theorems in the general case, though the basic argument
is the same.

Proposition 1.6.1. Let I be an ideal of OK with Z-basis {α, β}, regarded as a lattice in R2 via the
embedding φ : K → R2 above. Then vol(R2/I) = 1

2 |∆[α, β]|1/2.

19



In the case where K is imaginary quadratic and I = OK , we briefly discussed this at the end of
the section on discriminants.

Proof. Let (x1, y1) = φ(α) and (x2, y2) = φ(β), so we can write α = x1 + y1√
|d|

√
d and β =

x2 + y2√
|d|

√
d. Note ∆[α, β] = αβ − αβ. Since αβ = x1x2 + d

|d|y1y2 + (x1y2 + x2y1)
√
d√
|d|
, we have

|∆[α, β]|1/2 = 2|x1y2 − x2y1|. By the exercise below, this is twice the volume of the parallelogram
with corners (0, 0), (x1, y1), (x2, y2) and (x1+x2, y1+y2), which is the standard fundamental domain
of the lattice I ⊆ R2 (with respect to the basis (x1, y1), (x2, y2)).

Exercise 1.16. Let u = (x1, y1) and v = (x2, y2) be linearly independent vectors in R2. Show the
parallelogram with corners 0, u, v and u+ v has area |x1y2 − x2y1|.

Corollary 1.6.2. With the notation of the previous proposition, vol(R2/I) = 1
2N(I)

√
|∆K |.

This gives a geometric interpretation of the norm of an ideal in terms of the volume of the
corresponding lattice.

Proof. This is immediate since N(I) =
√

∆[α,β]
∆K

(Lemma 1.4.1.)

Lemma 1.6.3. For any ideal I of OK , there is a nonzero α ∈ I such that

|N(α)| ≤ 2

π
N(I)

√
|∆K |.

Proof. From the previous corollary, Minkowski’s theorem implies that if X is the (open) disc of
radius r centered at the origin in R2, it contains a nonzero lattice point, i.e., a nonzero α ∈ I,
whenever πr2 > 2N(I)

√
|∆K |. Suppose r2 > 2

πN(I)
√
|∆K |+ ε for some ε > 0 so there is such an

α.
Now if we write α = x+ y√

|d|

√
d, we see N(α) = x2 ± y2 according to whether K is imaginary

quadratic or real quadratic. Now α ∈ X means x2 + y2 < r2, which of course implies |x2− y2| < r2,
so in either the imaginary or real case we have |N(α)| < r2 = 2

πN(I)
√
|∆K | + ε. Taking ε → 0

gives the desired result.

Recall if I,J are fractional or ordinary ideals of a ring R, we say I and J are equivalent if
aI = bJ for some a, b ∈ R and write I ∼ J . Via this equivalence, the class group of R (which we
technically have only defined when R is the ring of integers of a number field) is just the group of
equivalence classes of fractional ideals.

Lemma 1.6.4. Let I be an ideal of OK . Then I ∼ J for some ideal J with norm ≤ 2
π

√
|∆K |.

Proof. For some a ∈ OK , aI−1 ⊆ OK . Then I ′ = aI−1 is a ideal of OK such that II ′ = (a). Let
α ∈ I ′ such that |N(α)| ≤ 2

πN(I ′)
√
|∆K |, whose existence is guaranteed by the previous lemma.

Clearly I ′|(α) so we can write (α) = I ′J where J is an ideal of OK . Now we are done, since
J ∼ I ′−1 ∼ I and N(J ) = N(I ′)/N((α)) ≤ 2

π

√
|∆K |.

The point is that this lemma allows us to bound, and subsequently determine, the class number
in any explicit case, as well as use this to show it is finite in general. Let’s first start of with our
canonical example. Recall from Section 1.3, for K = Q(

√
d) with d 6= 1 squarefree, the discriminant

∆K = d if d ≡ 1 mod 4 and ∆K = 4d if d ≡ 2, 3 mod 4.
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Example 1.6.5. The class number of K = Q(
√
−5) is 2, and a set of representatives for the class

group is
{
OK , (2, 1 +

√
−5)

}
.

Proof. By the lemma, every ideal of OK is equivalent to one of norm ≤ 2
π

√
20 ≈ 2.85. There is

only one ideal of norm 1 (think back to the definition of the norm of an ideal), OK . Suppose p is
an ideal of norm 2. By Lemma 1.6.3 there is an nonzero α ∈ p with norm at most 5. However p|α
implies N(p)|N(α) means N(α) is even, i.e., N(α) = 2 or 4. But there are no elements of norm 2
(it is not of the form x2 + 5y2 = N(x+ y

√
−5)), so we must have α is of norm 4, i.e., α = ±2.

This means p|(2), but the prime ideal factorization of (2) in OK is (2) = (2, 1 +
√
−5)2 either

from last semester or the exercise below. Hence (2, 1 +
√
−5) is the only ideal of norm 2, and it is

not principal.

A more elementary proof of the above fact is in the Chapter 12 notes from last semester, based
off of what was in Stillwell. It still uses the lattice picture of ideals, but does not require Minkowski’s
theorem. In fact, a general proof of finiteness of the class group which avoids Minkowski’s theorem
is in [Lang].

Exercise 1.17. Consider the ideal p = (2, 1+
√
−5) in Z[

√
−5]. We proved several things about this

ideal last semester, but using norms we can give more elegant arguments. In any case, this exercise,
and the following ones, should be a good review for you.

(i) Show p|(2) but p 6= (2). Using norms, conclude N(p) = 2.
(ii) From (i) conclude p is non-principal and prime.
(iii) Show the prime factorization of (2) is (2) = p2.

Exercise 1.18. Consider the ideals q = (3, 1 +
√
−5) and q = (3, 1−

√
−5) in Z[

√
−5].

(i) Show N(q) = N(q) = 3.
(ii) Show q, q are non-principal and prime.
(iii) Show the prime factorization of (3) is (3) = qq.

Exercise 1.19. From the previous two exercises, determine the prime ideal factorization of (6) in
Z[
√
−5]. Explain how the non-unique factorization of elements 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) in

Z[
√
−5] is resolved in terms of the prime ideal factorization of the ideal (6).

Exercise 1.20. Let K = Q(
√
−5). By the above exercises, together with the fact that hK = 2,

p ∼ q in the notation above. Show this explicitly by finding nonzero α, β ∈ OK such that αp = βq.

Exercise 1.21. Using Lemma 1.6.4, show Q(
√
d) has class number 1 for d = −1,−2,−3,−7, 2, 3, 5.

These are all the cases where Lemma 1.6.4 immediately gives class number 1, but there are other
cases.

Exercise 1.22. Show Q(
√
−11) has class number 1.

The only other imaginary quadratic fields with class number 1, i.e., with unique factorization in
their ring of integers, are Q(

√
−d) with d = 19, 43, 67, 163 (making for a total of 9 such fields). It

is not difficult to see that these fields all have class number 1—it is much harder to show that they
are the only ones. This is Gauss’s class number conjecture, and we will say a little more about this
later. For now we will just say it was proven in 1934 by Heilbronn and Linfoot that there are only
finitely many such imaginary quadratic fields, and eventually proved that there were no others by
Heegner and Stark in the 50’s and 60’s.
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Contrast this with the real quadratic case where it is conjectured that there are infinitely many
instances of class number 1 (in fact, it is thought that about 75% should be). Tables of class
numbers for small real and imaginary quadratic fields are given below.

Exercise 1.23. Show Q(
√
−6) has class number 2.

Now we want to show the finiteness of the class number for a general quadratic field. We need
to know one more small fact about ideals first.

Lemma 1.6.6. Let K be a quadratic field and n ∈ N. There are only finitely many ideals I of OK
such that N(I) = n.

Proof. Regarding OK as a lattice in R2 as above, the ideals of norm n correspond to the lattices
of R2 contained in OK (i.e., sublattices of OK) of (co)volume n

2

√
|∆K | by Corollary 1.6.2. It is

geometrically clear that there are only finitely many such (sub)lattices.
We will see another proof later when we study the behavior of primes in extensions. In particular

we will show that if N(I) = n, then I|(n). But there are only finitely many ideals dividing (n) by
the uniqueness of prime ideal factorization.

Theorem 1.6.7. Let K be a quadratic field. Then hK <∞, i.e., ClK is a finite abelian group.

Proof. By Lemma 1.6.4, there is some n such that any equivalence class of ideals has a representative
with norm ≤ n. Now by the previous lemma, there are only finitely many ideals with norm ≤ n.

1.7 The geometry of numbers: the general case

Now suppose K is a number field of degree n. In order to look at OK “geometrically”, i.e., as a
lattice, we need a way to embed K into Rn. Of course if α1, . . . , αn is a basis for K (as a Q-vector
space), we could send

∑
ciαi to (c1, . . . , cn) ∈ Rn, but there are two issues: (i) this is not at all

canonical since it is highly dependent on the choice of basis, and (ii) there is no way with such an
arbitrary embedding to relate vol(Rn/I) with the discriminant/norm of an ideal I of OK in order
to get an analogue of Proposition 1.6.1 and its corollary.

In fact, if we look over the proof of Lemma 1.6.3, we see the key is that |N(α)| is ≤ the square
of the distance from α to the origin in R2, with equality in the imaginary quadratic case. However,
in some sense, the embedding we used in the real quadratic case, while perhaps the most obvious
choice, was not natural in that it came from the “standard” basis 1,

√
d of K = Q(

√
d). One might

then ask if there is a more “natural” embedding of a real quadratic field K = Q(
√
d) ↪→ R2. There

is, and the idea is to use the Galois group. Let σ1, σ2 be the embeddings of K ↪→ R (all embeddings
are real) given by σ1(a+ b

√
d) = a+ b

√
d and σ2(a+ b

√
d) = a− b

√
d.

Consider the embeddingK ↪→ R2 given by α 7→ (σ1(α), σ2(α)). This is “natural” since it does not
depend upon a choice of basis for K over Q, and the norm satisfies the desired geometric bound: if
α = a+b

√
d 7→ (x, y), then x = a+b

√
d, y = a−b

√
d, so x2+y2 = 2(a2+db2) ≥ 2|a2−db2| = 2N(α).

(Our naive embedding of a real quadratic field into R2 was of course perfectly fine for our goal in the
previous section, but the problem was it is not so helpful in suggesting an appropriate generalization
to arbitrary number fields. In fact, our naive embedding gives a better bound than the “natural”
one given by the Galois group stated below.)

The standard presentation of the geometry of numbers is as follows. Let K be a number field
of degree n. Then there are n embeddings of K ↪→ C, say σ1, . . . , σn. Assume the first s are

22



Table 1: Class numbers of small imaginary quadratic fields K = Q(
√
d)

d hK
-1 1
-2 1
-3 1
-5 2
-6 2
-7 1
-10 2
-11 1
-13 2
-14 4
-15 2
-17 4
-19 1
-21 4
-22 2
-23 3
-26 6
-29 6
-30 4
-31 3
-33 4
-34 4
-35 2
-37 2
-38 6
-39 4
-41 8
-42 4
-43 1
-46 4
-47 5
-51 2
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Table 2: Class numbers of small real quadratic fields K = Q(
√
d)

d hK
2 1
3 1
5 1
6 1
7 1
10 2
11 1
13 1
14 1
15 1
17 1
19 1
21 1
22 1
23 1
26 2
29 1
30 2
31 1
33 1
34 2
35 2
37 1
38 1
39 2
41 1
42 2
43 1
46 1
47 1
51 2
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real embeddings, i.e., σ1, . . . , σs actually embed K in R, and that the remaining σi’s are complex
embeddings, i.e., they do not map into R. If σi is a complex embedding, then σi also is, where
σi(α) = σi(α) and the bar denotes usual complex conjugation. In particular, there are an even
number 2t of complex embeddings, which occur in complex conjugate pairs. Let us denote them
τ1, τ1, . . . , τt, τ t.

Now we define the embedding φ : K → Rs × Ct ' Rs+2t = Rn by

φ(α) = (σ1(α), . . . , σs(α), τ1(α), . . . , τt(α)).

This is natural, in that it does not depend upon a basis for K. It does technically depend on the
ordering of the embeddings σi and τi, as well as a choice among each conjugate pair of complex
embeddings τi and τ i, but not in any significant way.

Example 1.7.1. If K = Q(
√
d) is a real quadratic field, then s = 2 and t = 0, and φ(α) =

(σ1(α), σ2(α)) is the embedding described above.
If K = Q(

√
−d) is an imaginary quadratic field, then s = 0 and t = 1, and Gal(K/Q) = {τ1, τ1}

where τ1 : K ↪→ C is the trivial embedding. Then also φ(α) = τ1(α) = α is the standard embedding
into C ' R2. If we had chosen τ1 to be complex conjugation, then τ1 would be the identity map on
K and we would have that φ(α) = α is the conjugate embedding into C ' R2.

Thus this embedding generalizes both what we did in the imaginary quadratic case (which was
basically nothing, just the standard identification of C with R2) as well as our second approach to
the real quadratic case.

Example 1.7.2. Let K = Q( 3
√

2). Then Gal(K/Q) = {σ1, τ1, τ1} where σ1 is the trivial auto-
morphism of K, τ1 maps 3

√
2 to ζ3

3
√

2 and τ2 maps 3
√

2 to ζ2
3

3
√

2. Thus φ : K ↪→ R × C ' R3

by
φ(a+ b

3
√

2 + c
3
√

4) = (a+ b
3
√

2 + c
3
√

4, a+ bζ3
3
√

2 + cζ2
3

3
√

4).

Exercise 1.24. Let K = Q( 4
√

2). Write down explicitly the map φ in this case. Compute φ(3),
φ(3 + 4

√
2) and φ(1 + 3

√
2 + 4
√

2).

Exercise 1.25. Let K = Q(
√
−5,
√

5). Write down explicitly the map φ in this case. Compute
φ(1 +

√
5), φ(1 +

√
−5) and φ(2i).

With the embedding φ given above, OK is a lattice in Rn, and as in the quadratic case we did
earlier, one can prove the following.

Proposition 1.7.3. Let I be an ideal of OK with basis α1, . . . , αn, regarded as a lattice in Rn via
the embedding φ. Then vol(Rn/I) = 2−t∆[α1, . . . , αn] = 2−tN(I)

√
|∆K |.

Here t is the number of complex embeddings of K ↪→ C as above. This proposition gives a
geometric interpretation of discriminants for general number fields.

Lemma 1.7.4. Let I be an ideal of OK . Then I is equivalent to an ideal of OK with norm
≤
(

2
π

)t√|∆K |.

Note that in the case of real quadratic fields, this gives a weaker bound that what we got in
the last section because there will be no factor of 2

π here. It’s possible to improve the bound in the
lemma by being more careful. Precisely one can show
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Lemma 1.7.5. (Minkowski’s bound) Let I be an ideal of OK . Then I is equivalent to an ideal
of OK with norm ≤

(
4
π

)t n!
nn

√
|∆K |.

This is better than the simple bound we gave in the previous section in real quadratic case, and
the same as our previous bound in the imaginary quadratic case. The better bound in the real case
is in line with the notion that the class numbers for real quadratic fields tend to be smaller than
those for imaginary quadratic fields, though it provides no real explanation. In any case, we will
not be concerned overly much with optimal bounds. For us, the main point is

Theorem 1.7.6. Let K be a number field. Then hK <∞.

The proof for the general case is the same as the quadratic case (Theorem 1.6.7), admitting one
of the bounds in the previous lemmas. Complete proofs of these results should be available in any
Algebraic Number Theory text.

1.8 Interlude: Dirichlet’s Units Theorem

There are several applications of Minkowski’s geometry of numbers to classical problems. Apart
from the applications to class groups and quadratic forms discussed above, other applications are
to bounding the number of lattice points enclosed by a polygon and bounding the number of balls
that can fit in a given region (i.e., sphere packing bounds—a remarkable result around 15 years ago
was the resolution of Kepler’s conjecture on the optimal way to pack spheres in space).

In algebraic number theory, there is another major application of the geometry of numbers, and
that is to prove Dirichlet’s Units Theorem. Since we will not have need of this theorem, we will not
prove it in the interest of time, but it is such a fundamental result about number fields we would
be remiss not to mention it.

Theorem 1.8.1. (Dirichlet’s Units Theorem) Let s be the number of real embeddings and 2t be the
number of complex embeddings of a number field K. Then the group of units U of OK is isomorphic
(as an abelian group) to Zs+t−1 × C2m for some m ∈ N.

The basic idea of the proof is to embed K in Rs+2t. Since the units are multiplicative, applying
logarithms coordinate-wise makes an additive subgroup of Rs+2t, i.e., an incomplete lattice, which
one shows is of rank s+ t− 1.

We note that the determination of the finite cyclic group C2m appearing in the theorem is simple
to determine for any given K. It is simply given by the roots of unity which are contained in K, as
any unit of finite order must be a root of unity, and all roots of unity are algebraic integers.

1.9 Debriefing

Dedekind introduced ideal theory to resolve the failure of unique factorization in OK for arbitrary
number fields K. The first suggestion that this is a good theory to look at is that it provides a
clear characterization of when OK does have unique factorization—namely, if and only if OK is a
PID, which is if and only if hK = 1. (We stated this before the prime ideal factorization theorem
last semester, even though we didn’t prove the only if direction until this chapter.) The prime ideal
factorization theorem tells us it in fact is an excellent theory to look at, and we saw how it resolved
the non-unique factorization of 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) in Z[

√
−5]. Historically, it was the

3rd approach to resolve these non-unique factorizations, coming after Gauss’s theory of quadratic
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forms (for quadratic fields) and Kummer’s theory of “ideal numbers.” These ideas are still very
interesting, and we will discuss them in Part II.

We began this chapter by generalizing some ideas such as conjugates and norms from quadratic
fields to arbitrary number fields using Galois groups. As you may be aware from algebra, in many
cases the Galois group of an extension can be somewhat difficult to compute, but simple non-
quadratic examples are still fairly easy to compute, as we have seen with examples.

The point is the Galois group of a degree n extension is a transitive subgroup of Sn acting on the
n roots of the minimal polynomial of a primitive element. When n = 2, there is only one transitive
subgroup of S2 ' C2, and the extension is necessarily Galois. Here it is immediate what the Galois
group is. However for n > 2, there is more than one transitive subgroup of Sn (e.g., Sn, An, Cn),
and one need to do some work to determine what is is. Further, sometimes the primitive element
is obvious, but sometimes it is not, e.g., what is a primitive element for Q(

√
2,
√

3)? (You can
show

√
2 +
√

3 works by a degree argument and the characterization of quadratic fields, but that
this can get complicated rather quickly. Even knowing this, how do you determine the minimum
polynomial—what is the minimum polynomial of

√
2 +
√

3?) In general, one probably wants to
use the main theorem of Galois theory (which I won’t review) to use the subfield lattice to help
determine the Galois group. However, the examples we will cover will be simple enough that we
don’t need to use the full force of Galois theory to determine the Galois group.

Knowing the Galois group of K over Q it is easy to determine the conjugates and norm of
an element in K. What is not so simple is determining the ring OK . There is an algorithm
for doing this using discriminants, though it turns out to be fairly computational even for simple
examples like Q(

√
2,
√

3). However, our main reason for looking at discriminants is that they
provide a fundamental invariant of a number field K and its ideals (i.e., the ideals of OK). For K
an imaginary quadratic field, the discriminant of OK or an ideal I of OK is essentially the volume
of the corresponding lattice, as well as essentially the norm of the ideal squared. (We only defined
the discriminant of a basis of an ideal, but by the formula in terms of the norm, this is clearly
independent of the choice of basis.) Then with Minkowski’s theorem, we were able to bound the
norm of “minimal” representatives of the class group in terms of the discriminant, providing a proof
of the finiteness of the class group ClK , as well as allowing us to explicitly determine the class group
in particular cases.

On the other hand, for real quadratic fields K ⊆ R, OK is not a lattice, but we have seen at
least two ways to embed K in R2 which makes OK a lattice—the naive way, and the approach via
Galois conjugates. The second approach generalizes for an arbitrary number field K of degree n,
allowing us to view OK as a lattice in Rn. As before the norm and discriminant of the ideal are
essentially the (co)volume of the lattice OK , and Minkowski’s theorem allows us to show the class
group is finite, and bound norms of a set of minimal representatives of the class group.

Stillwell talked about the shape of ideals in imaginary quadratic fields. Two lattices (ideals) in
C ' R2 will have the same shape if and only if they differ by a complex scalar (principal ideal).
Hence two ideals will have the same shape if and only if they are equivalent. Thus the class number
is the number of different possible shapes of ideals. Similarly, via the geometry of numbers developed
by Minkowski, if two ideals are equivalent, they will have they same shape, regarded as lattices in
Rn.

The goal of this chapter was to show finiteness of the class group (at least a complete proof in
the quadratic case, and the general case is similar in spirit), and show in some specific cases how we
can determine the class number and class group. There are two reasons for this: (i) to understand

27



factorization in OK , which is a basic problem in algebraic number theory, and (ii) applications to
Diophantine equations.

First off, the class group of K measures the failure of unique factorization in OK . The larger
it is the more different the set of irreducible factorizations of some algebraic integer α ∈ OK can
be. For example, K has class number 2 if and only if every element of OK does not have unique
factorization but any factorization into irreducibles has the same number of factors. We will come
back to this idea in Part II.

Now what is the bearing of the class group on solving Diophantine equations? Well, first of all,
the simplest case is when OK has unique factorization, i..e, class number 1. We have shown the
rings of integers of the fields Q(

√
d) for d = −1,−2,−3,−7,−11, 2, 3, 5 all have unique factorization.

Following the approach last semester, this makes it easy to determine which primes are of the form
x2 +dy2 for d = 1, 2, 3, 7. In particular, we used unique factorization in Z[

√
−2] to show y3 = x2 +2

has only one solution (5, 3) in N, and unique factorization in Z[ζ3] to show x3 + y3 = z3 has no
solutions in N. Lamé gave an argument that xp + yp = zp has no solutions in n for p and odd prime
whenever Z[ζp] has unique factorization.

Even when Z[
√
−d] does not have unique factorization, we can still use knowledge of the class

group to determine the primes of the form x2 + dy2. Specifically, we used the fact that Z[
√
−5] has

class number 2 to determine the primes of the form x2 + 5y2 at the end of last semester. (Refer
to last semester’s Chapter 12 notes, or wait till we review this next chapter.) In order to approach
this problem for general d > 0 squarefree, observe p = x2 + dy2 = (x + y

√
−d)(x − y

√
−d), which

means the prime p splits into prime ideals (p) = (x+ y
√
−d)(x− y

√
−d) in the ring Z[

√
−d]. This

is a particular case of the general question, given an extension of number fields L/K and a prime
ideal p of OK , how do we determine how it behaves in L, i.e., what is the prime ideal factorization
of pOL in OL? This is another basic question of Algebraic Number Theory, and in particular when
K = Q, it will tell us what is the prime ideal factorization of (n) in OL. Hence, this is important for
studying general Diophantine equations also, and this question will be the focus of the next chapter.

In the following chapter, we will briefly talk about cyclotomic fields K = Q(ζp) where ζp is a
primitive p-th root of unity and p is an odd prime. This is the next most important and basic
type of number field after the quadratic fields. This will (i) give us a better understanding of the
concepts discussed in this chapter for non-quadratic fields, and (ii) provide an opportunity for more
applications. The most famous application of these fields is to Kummer’s approach to Fermat’s last
theorem. While a complete proof of Kummer’s result would take longer than we would like to spend
on this, we will at least give a sketch of the argument using Dedekind’s ideal theory (as opposed to
Kummer’s original approach via ideal numbers).

Finally, a look at the class number tables in this chapter shows that even in the simple case of
quadratic fields, the class numbers behave with apparently little regularity, just like prime numbers
seem to behave with little regularity. Thus it might seem unlikely that one could come up with an
exact formula for the class number hK . Remarkably, Dirichlet did just that, using the theory of
L-functions, which itself is closely related to hidden regularities in prime numbers. This is what we
will study at the end of Part I.
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2 Primes in extensions

This chapter is about the following basic question: given an extension of number fields L/K and
a prime ideal p in OK , how does pOL factor into prime ideals of OL? This question is intimately
tied up with many questions of arithmetic. Going back to our motivating question of which primes
p are of the form p = x2 + ny2 (n 6= 1 squarefree), we will see that these are essentialy the p for
which (p) is a product of two principal ideals in Q(

√
−n). After addressing this general question

about splitting of prime ideals, we will apply this to primes of the form x2 + ny2.
Afterwards, we may do some more stuff, but then again maybe we won’t.
Note: we will sometimes talk about “ideals” of K or L, or “primes” of K or L. This is merely a

simplification of terminology and simply means (ordinary) ideals of OK or OL, or prime ideals of
OK or OL.

Another piece of notation to be careful of: if α ∈ OK , then (α) may represent αOK or αOL
depending upon whether we are talking about ideals of K or ideals of L. This should hopefully be
clear from context in most cases. If not, we will explicitly write αOK or αOL.

The presentation of this material in this chapter is, for the most part, based on [Marcus] and,
to a lesser extent, [Cohn] (for the quadratic case) and [Neukirch].

2.1 Splitting of primes

Throughout L/K denotes an extension of number fields. Before we give the basic definitions, let’s
recall what happens in the simplest example, which we studied last semester.

Example 2.1.1. Let K = Q and L = Q(i). Since OK = Z is a PID, any prime ideal of OK is
of the form (p) where p is a prime of Z. If p = x2 + y2 = NL/K(x + yi), then p = αβ for some
α, β ∈ OL and (p) = (α)(β) in OL, i.e., (p) is a product of two principal ideals in OL. Furthermore
p1 = (α) and p2 = (β) are both prime since they have norm p. The ideals p1 and p2 are distinct
except in the case p = 2 = (1 + i)(1− i) since 1 + i = −i(1− i), i.e., 1 + i and 1− i differ by units.

If p is not a sum of two squares, then this means there is no element of norm p in OL, so p
is irreducible in OL. Hence if some prime ideal p of OL divides (p) but p 6= (p), then it can’t be
principal (otherwise, the generator of p would divide p). However hL = 1 so OL is a PID. Thus
(p) = pOL = {pα : α ∈ OL} is itself a prime ideal.

Hence in this example, there are 3 possibilities for what happens to a prime ideal pOK of K in
the extension L:

(1) it splits as a product of two distinct prime ideals (p) = p1p2 in OL iff ±p = x2 + y2 and
p 6= 2, i.e., iff p ≡ 1 mod 4;

(2) it ramifies as the square of a prime ideal (p) = 2OL = (1 + i)2 = p2 in OL iff ±p = 2; and
(3) it remains prime or is inert, i.e., pOL is a prime ideal of OL, if and only if ±p 6= x2 + y2,

i.e., iff p ≡ 3 mod 4.

If a is an ideal of OK , we define

aOL = {a1x1 + a2x2 + · · ·+ akxk : ai ∈ a, xi ∈ OL} .

Notice this is just like the definition of the product of two ideals of the same ring. It is easy to see
that this is the smallest ideal of OL which contains the set a (see exercise below). Note if a = (a)
is a principal ideal of OK , then aOL = (a) = {ax : x ∈ OL}.

29



Exercise 2.1. Let a be an ideal of OK and A be an ideal of OL. Show aOL is an ideal of OL and
A ∩K = A ∩ OK (justify this equality) is an ideal of OK . We call aOL the extension of a to L
and A ∩ OK the restriction of A to K.

It is tradition to use gothic lower case letters for ideals of OK and upper case gothic letters for
ideals of OL. (Though I suppose it’s also tradition to write OK as OK , I’m not as fond of that
one.) However if K = Q, we just use integers for the ideals of OK = Z since they are all principal,
and lower case gothic letters for ideals of the extension L, as in the example above. If you have
trouble writing gothic letters by hand, you can just write the corresponding roman letter with an
underscore, or use another script.

While the extension and restriction of ideals are defined uniquely, this is not a 1-to-1 correspon-
dence, as there are more ideals of OL than ideals of OK . Precisely, we will see that different ideals
of OK extend to different ideals of OL, but different ideals of OL can restrict to the same ideal of
OK .

Definition 2.1.2. Let p be a prime ideal of OK and P be a prime ideal of OL. We say P lies over
(or lies above) p in L/K if P|pOL. We sometimes write this as P|p.

Going back to the previous example, in case (1) p1 and p2 lie above (p); in case (2) p lies above
(p) and in case (3) (p) = pOL lies above (p) = pOK .

Let p be a prime (ideal) of OK and P be a prime (ideal) of OL.

Lemma 2.1.3. The following are equivalent:
(a) P|p, i.e., P|pOL
(b) P ⊇ p
(c) P ∩ OK = P ∩K = p.

Proof. (a) ⇒ (b) since P ⊇ pOL ⊇ p.
To see (b) ⇒ (c), observe that P ⊇ p implies P ∩ OK ⊇ p. Since p is maximal, and P ∩ OK is

an ideal by the exercise above, we have P ∩OK is either p or OK . The latter is impossible since it
would imply 1 ∈ P.

To see (c) ⇒ (b) ⇒ (a), note that (c) implies P ⊇ p is obvious, and then P ⊇ pOL since P is
an ideal of OL.

In light of the equivalence (a) ⇐⇒ (b), the notation P|p for one ideal lying over another agrees
with the usage of the notation I|J to mean divides (contains) for ideals of OK .

Another thing this lemma shows is that two different ideals of L can restrict to the same ideal
of K. For example if p is a prime of K = Q, and pOL = p1p2 with p1 6= p2, then p1 and p2 both
restrict to the ideal pZ of Z. More generally, all primes P of OL lying above a prime p of OK restrict
to p.

Proposition 2.1.4. Every prime P of OL lies above a unique prime p of K. Conversely, every
prime p of K is contained in some prime P of OL, i.e., there is some prime P of OL such that P|p.

Proof. Suppose P ∩ OK |ab for some ideals a, b of OK . Then P ⊇ (aOL)(bOL) so P ⊃ aOL or
P ⊃ bOL since P is prime. Restricting to K, we see P ∩ OK |a or P ∩ OK |b. Hence P ∩ OK is a
prime ideal p of OK by definition, i.e., P|p. By the previous lemma, P|p implies P∩OK = p, hence
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p is unique. This proves the first statement, though technically one should also show P∩OK 6= {0}.
This is easy—see the exercise below.

The second statement is seemingly obvious: given p, the extension pOL has a prime ideal
factorization in OL, so any prime ideal P occurring in the factorization lies above p. However as
before, one needs to show a seemingly obvious technicality: pOL 6= OL (otherwise pOL would not
have a prime ideal factorization). This is also an exercise.

Exercise 2.2. Let L/K be an extension of number fields and I be a (nonzero) ideal of OL. Show
I ∩ OK 6= {0}. (You may want to consider using norms.)

Exercise 2.3. (a) Let a be a proper ideal of OK . Show there exists a γ ∈ K − OK such that
γa ⊆ OK .

(b) Let L/K be an extension of number fields and p a prime ideal of OK . Show pOL 6= OL.
(Use (a) to get a contradiction if pOL = OL.)

Exercise 2.4. (a) Let a, b be ideals of K. Show aOL|bOL =⇒ a|b. (Think about prime factoriza-
tions in K and L.)

(b) Show aOL ∩ OK = a for any ideal a of OK , i.e., the restriction of an extension gives the
ideal you started with. (Use (a) with b = aOL ∩ OK .)

(c) Determine which ideals A of L satisfy (A∩OK)OL = A, i.e., determine when the extension
of the restriction of an ideal is the ideal you started with.

Looking back at the case of K = Q and L = Q(i) from Example 2.1.1, we see sometimes the
number of primes lying above p is 1 and sometimes it is 2. In general, the number of primes above
p is never greater than n = [L : K], and if we count with primes with “multiplicty” and “weight” it
will always be n. Multiplicity is easy to imagine: if [L : K] = 2 and p = P2 then it makes sense
to count P two times—technically this multiplicity is called the ramification index (or ramification
degree). There is only one prime that is ramified in the extension Q(i)/Q, namely 2Z[i] = (1 + i)2.

The notion of some primes being “weighted” is a little more subtle, but it can obviously happen
that p = P, i.e., a prime p of K remains prime (or is inert) in L, i.e., pOL = P is prime in L.
If we go back to Example 2.1.1, half of the primes in Q are inert in Q(i), the ones ≡ 3 mod 4,
i.e., the primes not sums of 2 squares. One way to differentiate the case of inert and “split” primes
in this example is the following. For split primes (p ≡ 1 mod 4), we have pOL = pOL = P1P2,
then [OL : Pi] = N(Pi) = p (this also holds for the ramified case of p = 2), but for inert primes
(p ≡ 1 mod 3), then P = pOL = pOL is prime in L and we have [OL : P] = N(P) = NL/K(p) = p2.

Hence, if we think of the exponent of p in N(P) = [OL : P] as the “weight” of P, then we can
say the weighted sum of the primes above p (with multiplicity) is always 2, at least in Example
2.1.1. In general, when the base field K 6= Q, this definition of weight needs to be appropriately
modified, and we give the formal definitions of the appropriate multiplicity (ramification index) and
weight (inertial degree) below.

Exercise 2.5. Suppose P ∩ OK = p. Show the ring embedding OK ↪→ OL yields a field embedding
OK/p ↪→ OL/P. In other words, the finite field OL/P is an extension of OK/p.

Definition 2.1.5. Let p be a prime of K. Suppose the prime ideal factorization of pOL is p =
∏

Pei
i

where each Pi is distinct. The ramification index of Pi over p is e(Pi|p) = ei and the inertial
degree of Pi over p is f(Pi|p) = fi = [OL/Pi : OK/p].
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This definition of inertial degree is really the natural generalization of the “weight” of P we
suggested in the case of Q(i)/Q (see also lemma below). The previous exercise guarantees it makes
sense. For instance, if K = Q, then and P = pOL is prime in L, then f(P|(p)) = [OL/pOL : Z/pZ].
Now OL/pOL must be the finite field of order N(pOL) = NL/Q(p) = pn where n = [L : K], which
has degree n over Z/pZ, so the inertial degree is f(P|(p)) = n.

The above definition of inertial degree, is the standard one, but it is clearly equivalent to the
following form, which will be useful to us.

Lemma 2.1.6. The inertial degree fi = f(Pi|p) satisfies N(Pi) = N(p)fi .

Proof. We know OK/p is a finite field of some order, say q = N(p). By the exercise above OL/P is
an extension of OK/p, and the order of this extension field is qfi = N(Pi) by the definition of the
inertial degree. Hence N(p)fi = N(P).

Theorem 2.1.7. (The fundamental identity) With the notation in the definition,∑
eifi = n = [L : K].

For simplicity, we will omit some details of the proof when K 6= Q.

Proof. Note
N(pOL) =

∏
N(Pi)

ei =
∏

N(p)eifi ,

by the previous lemma. Then the theorem follows from the statement that N(pOL) = N(p)n.
This is true but not entirely obvious—one must check some details. However in our main case of

interest, which is K = Q, it is particularly simple, and in the interest of time and simplicity we will
restrict to whenK = Q. Then p = (p) for some p ∈ N and N(pOL) = N(pOL) = NL/K(p) = pn.

Hence if pOL =
∏

Pei
i (with each Pi distinct), the number of Pi lying above p is at most

n = [L : K], and is exactly n if we count multiplicities ei’s and “weights” fi’s. Now let’s give a
couple names for different ways in which p (i.e., pOL) can factor in OL.

Definition 2.1.8. Write pOL =
∏g
i=1 P

ei
i (with each Pi distinct). If ei > 1 for some i, we say p

ramifies in L. Otherwise, we say p is unramified in L.
If g > 1, i.e. there is more than one prime of L above p, then we say p is split in L. If g = 1,

i.e. there is only one prime of L above p, we say p is nonsplit in L.
If g = n, i.e. pOL = P1P2 · · ·Pn, then we say p is totally split (or splits completely) in L.

If g = 1 and e1 = 1, i.e. if pOL = P1, then we say p is inert (or remains prime) in L.

Note by the fundamental identity, if p is totally split in L, then ei = fi = 1 for each i. Similarly
if p is inert in L then f(P|p) = n where P = pOL. In particular if p is totally split or inert in
L, then it is unramified. We will see shortly that ramification is a special phenomenon which only
happens for finitely many primes.

We now give a couple of simple consequences of the lemma and fundamental identity.

Corollary 2.1.9. Let p be a prime ideal of K which lies above a prime p ∈ N. Then N(p) = pk for
some 1 ≤ k ≤ [K : Q].

Proof. It follows from the lemma above (or the argument before with the base field being Q), that
N(p) = pf(p|(p)). We know k = f(p|(p)) ≤ n by the fundamental identity.
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Knowing this is useful in determining whether an ideal is prime or not, and in determining how
a prime of Q splits in K. A consequence of this (without requiring the bound on k) is the fact that
an ideal of K divides (the ideal generated by) its norm. Recall we mentioned this result can be used
to prove that the class number of K is finite (see Lemma 1.6.6.

Corollary 2.1.10. Let I be an ideal of K and m = N(I). Then I|mOK .

Proof. Write I =
∏

pi where the pi’s are (not necessarily distinct) prime ideals of K. Then m =

N(I) =
∏
N(pi). By the previous corollary, we can write N(pi) = pfii for some fi where pi|pi. In

particular pi ⊇ piOK ⊇ pfii OK . Hence

I =
∏

pi ⊇
∏

pfii OK = mOK .

Now one might ask if all primes of L above p have the same ramification index and inertial
degree. This is not true in general, but it is true if we pass to the Galois closure of L. Precisely, we
have the following.

Theorem 2.1.11. Suppose L/K is Galois and write p = Pe1
1 · · ·P

eg
g where the Pi’s are distinct

prime ideals of L. Then Gal(L/K) acts transitively on P1, . . . ,Pg. In particular e1 = e2 = · · · = eg
and f1 = f2 = · · · = fg. In this case, if we set e = e1 and f = f1, we have

pOL = Pe
1P

e
2 · · ·Pe

g

and the fundamental identity becomes
n = efg.

Proof. Let σ ∈ Gal(L/K) and P|p. Since L/K is Galois, σ(P) ⊆ OL. It follows immediately from
the definitions that σ(P) is an ideal of OL and σ(P) is prime. Note if x ∈ p, then σ(x) = x since
x ∈ OL. Thus P ⊇ p implies σ(P) ⊇ p, i.e., σ(P)|p. This implies Gal(L/K) acts on P1, . . . ,Pg.

Now we want to show this action is transitive. Suppose it is not, i.e., suppose P,P′|p but
P′ 6= σ(P) for any σ ∈ Gal(L/K). By the Chinese Remainder Theorem (for general rings) there is
an x ∈ OL such that

x ≡ 0 mod P′, x ≡ 1 mod σ(P) for all σ ∈ Gal(L/K).

Now y = NL/K(x) =
∏
σ(x) ∈ P′ ∩ OK = p. On the other hand P - (y) =

∏
(σ(x)) since no

σ(x) ∈ P. But this means y 6∈ p = P ∩ OK , a contradiction.
This shows Gal(L/K) acts transitively on P1, . . . ,Pg. On the other hand, Gal(L/K) fixes

pOL = Pe1
1 Pe2

2 · · ·P
eg
g , so all the ramification indices ei are the same by uniqueness of prime ideal

factorization. Also, because P1, . . . ,Pg are Galois conjugates of each other, they all have the same
norm. Hence the all the inertial degrees fi are the same. The restatement of the fundamental
identity is immediate.

When L/K is Galois, we say the ideals σ(P) are conjugates of P.
We remark that just like one can define the norm of elements from L to K, one can define the

norm of ideals from L to K. Precisely, if A is an ideal of L, then the norm from L to K of A is

NL/K(A) =
∏

σ∈Gal(L/K)

σ(A) ∩ OK .
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Of course, this norm is an ideal, not a number, but remember that ideals are a sort of generalization
of numbers. One can show this satisfies various nice properties, and thus it can be useful like the
usual norm is useful.

Exercise 2.6. Suppose L/K is Galois.
(a) Suppose P is a prime of L lying above p, a prime of K. Let f = f(P|p). Show NL/K(P) =

pf .
(b) Show NL/K(AB) = NL/K(A)NL/K(B) for any ideals A,B of OL.
(c) Let A be an ideal of L with norm n = N(A) = |OL/A|. Show NL/Q(A) = (n). In other

words, the notion of an “ideal-valued norm” from L to K agrees with the original definition of the
integer-valued norm when K = Q (identifying the principal ideal (n) with the integer n).

2.2 Splitting in quadratic fields

In this section, we will let K = Q(
√
d) be a quadratic field. As usual we will assume d 6= 1 is

squarefree. Further p will denote a prime (element) of Z and p will denote a prime (ideal) of OK .
In this case, the splitting of p (i.e., of pZ) in K is particularly simple. By the fundamental

identity there are at most 2 prime ideals of K lying above p (i.e., pZ), counting multiplicity. Hence
either p is inert in K, i.e., pOK is a prime ideal of OK , or pOK = p1p2 where p1 and p2 are prime
ideals of OK . When p1 = p2, p is ramified in OK , and when p1 6= p2, p splits in OK . Note that
since K is quadratic, p splitting and p splitting completely are one and the same.

Let ∆ = ∆K be the discriminant of K. Recall ∆ = d if d ≡ 1 mod 4 and ∆ = 4d if d ≡
2, 3 mod 4.

Let
(
a
p

)
denote the Kronecker symbol mod p. If p is odd,

(
a
p

)
is the ordinary Legendre symbol

define for any a ∈ Z, i.e.,
(
a
p

)
= 1 when gcd(a, p) = 1 and a is a square mod p,

(
a
p

)
= −1 when

gcd(a, p) = 1 and a is a nonsquare mod p, and
(
a
p

)
= 0 when p|a. If p = 2, we set

(
a

2

)
=


0 4|a
1 a ≡ 1 mod 8

−1 a ≡ 5 mod 8

undefined a 6≡ 0, 1 mod 4.

This is an extension of the Legendre symbol where we have allowed p = 2 on the bottom, and p|a
for p odd. Note the definition for p = 2 satisfies(

a

2

)
=

(
2

a

)
whenever a ≡ 0, 1 mod 4. Since the squares mod 8 are 0, 1, 4, the Kronecker symbol mod 2 detects
whether an a ≡ 0, 1, mod 4 is a square mod 8. The problem with a 6≡ 0, 1 mod 4, is one cannot
extend the Kronecker symbol to integer values for such a so that it is multiplicative in a. However,
this is fine for us, since we only want that

(
∆
p

)
is defined for any prime p ∈ N, which it is since

∆ ≡ 0, 1 mod 4. The utility of this definition is apparent from the following result on the splitting
of p in K.

Theorem 2.2.1. Let p ∈ N be prime.
(i) If

(
∆
p

)
= 0 then p is ramified in K.
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(ii) If
(

∆
p

)
= 1 then p is split in K.

(iii) If
(

∆
p

)
= −1 then p is inert in K.

Note this say the primes with ramify in K are precisely the ones dividing ∆. In particular, there
are finitely many.

Proof. Let p be a prime of K lying above p. Then p is a subgroup of OK which is free of rank 2 over
Z. In particular, p is generated (as an ideal) by at most 2 elements of OK . We may take one of them
to be p, and write p = (p, π) for some π ∈ OK . Write π = a+b

√
d

2 . Further, since N(p)|NK/Q(π) we
have p|NK/Q(π) = a2−db2

4 , so a2 ≡ db2 mod p (in fact, mod 4p).
We first prove the contrapositive of (iii). Suppose pOK is not inert and p is odd. Then p 6= pOK ,

so p - π, i.e., a and b are not both divisible by p. This implies b 6≡ 0 mod p. Let b−1 such that
b−1b ≡ 1 mod p. Then a2 ≡ db2 mod p implies (ab−1)2 ≡ d mod p, i.e., d is a square mod p so
either

(
d
p

)
= 1 or 0, according to whether p - d or p|d. Since ∆ = d or ∆ = 4d,

(
d
p

)
6= −1 implies(

∆
p

)
6= −1. This proves (iii).
A similar argument works for p = 2.
Now suppose

(
∆
p

)
= 0 and p odd. Then

(
∆
p

)
=
(
d
p

)
, so p|d. In this case, we can take p = (p,

√
d).

To see this, observe that any element of p looks like

1

2
((x+ y

√
d)p+ (z + w

√
d)
√
d) =

1

2
(px+ dw + (z + py)

√
d)

for some x, y, z, w ∈ Z. Since p|d, this means

OK ) (p,
√
d) =

{
1

2
(px+ y

√
d) : x, y ∈ Z

}
∩ OK ) pOK .

Hence p = (p,
√
d) lies above p. Thus pOK = pp where p is the conjugate ideal of p in K, but

p = (p,−
√
d) = p, so p is ramified in K.

The case of
(

∆
p

)
= 0 and p = 2 is an exercise below.

Now assume
(

∆
p

)
= 1 and p odd, so that

(
∆
p

)
=
(
d
p

)
= 1. Let a ∈ Z be such that a2 ≡ d mod p.

Note p - a since p - d. We claim we can take p = (p, a +
√
d). Then the conjugate ideal is

p = (p, a−
√
d). It is clear thatp, p ) pOK , so it suffices to show p 6= OK . To see this, observe that

pp = (p2, pa+ p
√
d, pa− p

√
d, a2 − d) ⊆ pOK .

Hence pOK = pp (and p, p are primes of K). It remains to show p 6= p. If p = p, then we would
have 2a = a+

√
d−a−

√
d ∈ p∩Z = pZ, which is impossible since p - 2a. This shows p splits in K.

Suppose
(

∆
p

)
= 1 and p = 2. Then ∆ ≡ 1 mod 8. Then as in the p odd case one shows one can

take p = (2, 1+
√
d

2 ), p 6= p and pp = 2OK .

Exercise 2.7. Suppose
(

∆
2

)
= 0. Show p = (2, π) is a proper ideal of K containing 2OK , where

π =
√
d or 1 +

√
d according to whether d is even or odd. Use this to verify (i) in the above theorem

for p = 2.

Exercise 2.8. Let K = Q(
√
−5). Determine which primes of Q ramify in K and which are

unramified. Then determine which primes of Q split completely in K and which are inert.
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Note that in the course of the proof of the above theorem, we were able to explicitly describe
the prime ideals of K lying above p. For convenient reference, we summarize this below.

Corollary 2.2.2. If p 6= 2 is ramified in K, then p = (p,
√
d) is a prime of K lying above p. (For

p = 2 ramified in K, see Exercise 2.7 above.) If p 6= 2 splits in K, then p = (p, a+
√
d) is a prime

of K lying above p for any a such that a2 ≡ d mod p. If 2 splits in K, then d ≡ 1 mod 4 and
p = (2, 1+

√
d

2 ) is a prime of K lying above 2.

The above theorem is very useful for many things. One application is to determining class
numbers and class groups of quadratic fields.

Example 2.2.3. Let K = Q(
√
−19). This has determinant ∆ = −19. By Lemma 1.6.4 (or

Minkowski’s bound, which is the same in this case), every ideal of OK is equivalent to one of norm
at most 2

π

√
19 ≈ 2.85. There is only ideal of norm one, namely OK , which is principal. Any ideal

of norm 2 must lie above 2 (Corollary 2.1.9), but
(

∆
2

)
= −1 since ∆ = −19 ≡ 5 mod 8, i.e., 2 is

inert in K. Hence there is no ideal of norm 2, which means the class number hK = 1.

Exercise 2.9. Show K = Q(
√
−15) has class number 2.

Exercise 2.10. Show K = Q(
√
−43) has class number 1.

Another application of the above theorem is to determining primes of the form x2 + ny2, which
we consider next.

2.3 Primes of the form x2 + ny2

Recall that one of our motivating questions, both this semester and last semester, was to study
numbers of the form x2 + ny2. Any two number of the form x2 + ny2 have a product which is also
of the form x2 + ny2 by Brahmagupta’s composition law, so this question largely reduces to the
question of which primes p are of the form x2 + ny2.

It is clear that p = x2 + ny2 means p is reducible in the ring of integers of K = Q(
√
−n). For

simplicity, we assume n is a square free integer, and put d = −n, so K = Q(
√
d) which coincides

with the notation in the previous section. For the result below we will allow n to be negative,
because it is no extra work (it just involves including a ± sign), though our main interest is in
n > 0.

We will also assume n 6= −1, because then K = Q. So the case of n = −1 is particularly simple,
as our question is: which primes are of the form p = x2−y2 = (x−y)(x+y). But this factorization
means (say for p > 0) that x − y = 1 so p = 2y + 1, i.e., all odd p > 0 are of the form x2 − y2.
Interchanging x and y also shows that any odd p < 0 is of the form x2 − y2.

Proposition 2.3.1. Let p be a prime of Z. If p = x2+ny2 for some x, y ∈ Z, then pOK = p1p2 where
p1 and p2 are (not necessarily distinct) principal prime ideals of OK . Conversely, if pOK = p1p2

where p1 and p2 are principal prime ideals of OK , then
(i) ±p is of the form x2 + ny2 if n ≡ 1, 2 mod 4;
(ii) ±4p is of the form x2 + ny2 if n ≡ 3 mod 4.

Proof. (⇒) As above, set d = −n to match with notation from the previous section. Suppose
p = x2 + ny2 = x2 − dy2 = (x + y

√
d)(x − y

√
d). Since p is squarefree, both x and y must be

nonzero so α = x + y
√
d and β = x − y

√
−d are nonzero nonunits of OK . Thus pOK = (α)(β)
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is the prime ideal factorization of pOK . (The ideals (α) and (β) are prime either by the argument
that NK/Q(α) = NK/Q(β) = ±p or using the fundamental identity to count the prime ideals in the
factorization of pOK).

(⇐) Suppose pOK is a product of two principal prime ideals p1 = (α) and p2 = (β). Since
the ideals (α) and (β) are conjugate, we may assume α and β are conjugate, i.e., α = x + y

√
d,

β = x−y
√
d for some x, y ∈ Q. Then NK/Q(α) = NK/Q(β) = p, and the factorization pOK = (α)(β)

implies p = uαβ = u(x2 − dy2) for some unit u of OK . Since x2 − dy2 ∈ Z, we must have u = ±1.
If d ≡ 2, 3 mod 4, then we may assume x, y ∈ Z so we have shown (i). If d ≡ 1 mod 4, then

x, y ∈ 1
2Z and (ii) follows.

Note that we can rephrase the n ≡ 1, 2 mod 4 case as follows: ±p = x2 +ny2 if and only if pOK
is a product of 2 (not necessarily distinct) principal ideals in OK .

When n > 0, the ± sign here is moot: negative p are never of the form x2 + ny2, but for n < 0
the distinction of whether p or −p is of the form x2 +ny2 is somewhat more subtle. Our main focus
is when n > 0, so we will not worry about this now, but it can be treated via the general theory
of binary quadratic forms. We will discuss binary quadratic forms in Part II, but again our focus
there will be mostly on the “positive” cases.

One can make a similar if and only if statement when n ≡ 3 mod 4.

Exercise 2.11. Suppose n ≡ 3 mod 4. Show pOK = p1p2 for two (not necessarily distinct) prime
ideals p1, p2 of OK if and only if ±4p = x2 + ny2 for some x, y ∈ Z.

To see that these two cases are necessary, look at K = Q(
√
−11). Then p = 3 = 1+

√
−11

2
1−
√
−11

2
so p splits in OK , but 3 6= x2 + 11y2 for x, y ∈ Z. Of course 12 = 4 · 3 = 12 + 11 · 12.

We remark that one could treat the n ≡ 3 mod 4 and the n ≡ 1, 2 mod 4 uniformly as follows:
±p = x2 + ny2 if and only if pZ[

√
−n] is a product of two proper principal ideals of Z[

√
−n].

However the issue with this is that the ideals of Z[
√
−n] (when n ≡ 3 mod 4) are more difficult to

study than OK , e.g., the prime ideal factorization theorem does not hold for Z[
√
−n].

Now let’s see how we can use this to give alternative (simpler) proofs of some of our main results
from last semester. New cases are contained in the exercises. Below p denotes a prime number in
N and x, y ∈ Z.

Corollary 2.3.2. (Fermat’s two square theorem) We can write p = x2 +y2 if and only if p = 2
or p ≡ 1 mod 4.

Proof. By the proposition, p = x2 + y2 if and only if p is a product of two (not necessarily distinct)
principal ideals in Q(i). (−p cannot be a sum of 2 squares so the ± in the proposition is not an
issue here.) Since we know the class number of Q(i) is 1, we in fact have p = x2 + y2 if and only if
p splits or ramifies in Q(i).

Here ∆ = ∆Q(i) = −4, so by Theorem 2.2.1, p = x2 + y2 if and only if p = 2 (the ramified
case) or

(
∆
p

)
=
(−4
p

)
=
(−1
p

)
= 1. But the first supplementary law to quadratic reciprocity tells us(−1

p

)
= 1 if and only if p ≡ 1 mod 4.

Exercise 2.12. We have p = x2 + 2y2 if and only if p = 2 or p ≡ 1, 3 mod 8.

We proved this in Chapter 9 last semester, but you should give a simpler argument using the
above results. Then we left the case of x2 + 3y2 as an exercise in Chapter 9, which you may recall
was considerably more challenging than the x2 + 2y2 case. In fact, we still haven’t made things any
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easier on ourselves for this case since this corresponds to d ≡ 1 mod 4 above. It may be worthwhile
to see what the issue is, so let’s go through this.

Suppose p = x2 + 3y2. Then by the above proposition pOK is a product of two principal ideals
of OK , where K = Q(

√
−3). In this case hK = 1, so every ideal is principal. Hence p either splits

or ramifies in OK which means
(

∆
p

)
=
(−3
p

)
=
(p

3

)
= 0 or 1, i.e., p = 3 or p ≡ 1 mod 3. Clearly

p = 3 is of the form x2 + 3y2. It remains to show if p ≡ 1 mod 3, then p = x2 + 3y2. By this
same computation of

(
∆
p

)
, if p ≡ 1 mod 3, the p splits into two (prinicipal) ideals of K. However

since d = −n ≡ 1 mod 4, the above proposition only tells us that 4p = x2 + 3y2. For instance
4 ·7 = 52 +3 ·12. It is not clear how to conclude that we must have p = (x′)2 +3(y′)2 for some x′, y′,
though it is true. Roughly, one might like to use Brahmagupta’s composition law (the product of
two numbers of the form x2 +ny2 is again of this form—this is simple, but not pretty, computation)
in reverse: 4 = 12 +3 ·12 and 4p are both of the form x2 +3y2, so their quotient p = 4p/4 should be.
We will see that one can more or less do just this using Gauss’s theory of binary quadratic forms
in Part II. Hence for now, we will forget about the case n ≡ 3 mod 4 (i.e., d ≡ 1 mod 4).

Corollary 2.3.3. We have p = x2 + 5y2 if and only if p = 5 or p ≡ 1, 9 mod 20.

Proof. Let K = Q(
√
−5) so ∆ = ∆K = −20. Only two primes p ramify in K, p = 2 and p = 5.

Clearly 2 6= x2 +5y2 and 5 = x2 +5y2, so from now on, assume p is unramified. (By the proposition
above, this corresponds to the fact that 2OK is the square of the nonprincipal ideal (2, 1 +

√
−5)

and 5OK is the square of the principal ideal (
√
−5).)

Note that p is split in K if and only if
(

∆
p

)
=
(−5
p

)
= 1, i.e., if and only if p ≡ 1, 3, 7, 9 mod 20.

(⇒) If p = x2 + 5y2, then p splits in K by the proposition, so p ≡ 1, 3, 7, 9 mod 20. On the
other hand, x2 + 5y2 ≡ x2 + y2 ≡ 0, 1, 2 mod 4 so p 6≡ 3, 7 mod 20. (Alternatively, one can look at
the squares mod 20.)

(⇐) Suppose p ≡ 1, 9 mod 20 but p 6= x2 + 5y2. The congruence conditions imply pOK = pp
where p is a prime ideal of K, and p 6= x2 + 5y2 means p is nonprincipal. Since hK = 2, this means
p ∼ (2, 1 +

√
−5), i.e., p = α(2, 1 +

√
−5) for some α ∈ K.

Write α = a
c + b

d

√
−5 for some a, b, c, d ∈ Z. Note that 2α and (1+

√
−5)α must lie in OK . Since

2α ∈ OK , c|2 and d|2 so we can write α = a+b
√
−5

2 (replacing a and b with 2a and 2b if necessary).
Then one has

(2)p = (a+ b
√
−5)(2, 1 +

√
−5).

Taking norms yields
2p = a2 + 5b2.

Reducing this equation mod 5 yields a2 ≡ 2, 3 mod 5 (since p ≡ 1, 4 mod 5), which is a contradic-
tion.

For a slightly different argument, see last semester’s Chapter 12 Notes. One could simplify this
proof if we knew we could use Brahmagupta’s composition law in reverse (see above remarks on
x2+3y2). In particular, for the argument in the (⇐) direction, p ∼ (2, 1+

√
−5) means (a+b

√
−5)p =

(c+ d
√
−5)(2, 1 +

√
−5) for some a, b, c, d ∈ Z[

√
−5]. Taking norms gives p(a2 + 5b2) = 2(c2 + 5d2).

Since 2 is not of the form x2 + 5y2, one would like to conclude p is not either, but it is not obvious
how to make this argument work. We will essentially be able to via genus theory in Part II.

Before moving on, let us observe there is another interesting characterization of which primes
are of the form x2 + 5y2. Suppose n > 0 and n ≡ 1, 2, mod 3. As before, set K = Q(

√
−n). When
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hK = 1, the above proposition and the theorem if that a prime p is of the form x2 +ny2 if and only
if
(

∆
p

)
= 0 or 1. By quadratic reciprocity, one can then essentially say an prime p is of the form

x2 +ny2 if and only if p is a square mod ∆. (One can formalize this with a different extension of the
Legendre symbol called the Jacobi symbol—we won’t go through the details, but you can observe
it in the simplest case: p 6= 2 is of the form x2 + y2 if and only if p is a square mod ∆Q(i) = −4.)

When hK = 2 (or larger), the problem is the quadratic residue symbol can essentially only
detect 2 things—whether p is split or inert (or ramified). But we need to distinguish when a p splits
into principal ideals and when p splits into nonprincipal ideals. Check the following criterion for
x2 + 5y2.

Exercise 2.13. Let K = Q(
√
−5), and p ∈ N be a rational prime. Show p = x2 + 5y2 if and only

if
(

∆
p

)
= 1 and p is a square mod ∆.

One can treat other forms x2 + ny2 similar to x2 + 5y2 when the class number of Q(
√
−n) is 2.

Exercise 2.14. Determine all primes of the form x2 + 6y2.

When the class number of K = Q(
√
−n) is larger than 2, determining the primes of the form

x2 + ny2 can get considerably more complicated, and the solution will depend upon the structure
of the class group ClK . In general, primes of the form x2 +ny2 are not characterized just by simple
congruence conditions (though it always will be if ClK ' (Z/2Z)r). We will explore some of the
issues involved in Part II.

2.4 General splitting results

In this section, let L/K be an extension of number fields, let p denote a prime of K and P denote
a prime of L. If pOL =

∏
Pei
i with the Pi’s distinct prime ideals of L, then fi denotes the inertial

degree fi = f(Pi|p).
In Section 2.2, we saw that it is simple to understand completely the way a prime p splits in

L when K = Q and L is quadratic. (It is also not much harder when K is arbitrary and L/K
is quadratic.) In general things are not so simple, but there are some general fundamental results
which describe the splitting of primes in L/K. We will not give complete proofs in both the interest
of time and simplicity.

Note that OK [α] is a free OK-module of rank n = [L : K], so it has finite index (either as an
abelian group or OK-module) in OL. Thus OL/OK [α] is a finite abelian group.

Theorem 2.4.1. Write L = K(α) and let q(x) ∈ OK [x] be the minimum polynomial for α over
K. Suppose p is a prime of Z such that p - |OL/OK [α]| and p is a prime ideal of K lying above p.
Write

q(x) ≡ q1(x)e1q2(x)e2 · · · qg(x)eg mod p

where the qi’s are distinct irreducible polynomials (of positive degree) in the finite field OK/p. Then

pOL = Pe1
1 Pe2

2 · · ·P
eg
g

for distinct prime ideals P1, . . . ,Pg of OL such that fi = f(Pi|p) = deg qi(x).

This theorem provides a way to determine how prime ideals p of K split in L. For technical
reasons, a finite number of primes p are excluded from this result.
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Proof. (Sketch.) One first shows

OL/pOL ' (OK [α])/(pOK [α]) ' (OK/p)[x]/(q(x)),

where q(x) is the image of q(x) in (OK/p)[x]. The first isomorphism requires that pOL + F = OL
where the conductor F is the largest ideal of OL contained in OK [α]. This is where the technicality
that p - |OL/OK [α]| comes in. The second isomorphism is straightforward.

Then one can use the Chinese Remainder Theorem (for general rings, whose proof is essentially
the same as for Z),

(OK/p)[x]/(q(x)) '
g⊕
i=1

(OK/p)[x]/(qi(x)ei),

where qi(x) is the image of qi(x) in (OK/p)[x].

Exercise 2.15. Suppose K = Q and L = Q(
√
−5). Determine |OL/OK [α]| where α =

√
−5.

Verify the above theorem in this case.

Theorem 2.4.2. Consider the extension K/Q. Then a prime (p) of Q ramifies in K if and only if
p|∆K .

In particular, only finitely many primes of Q ramify in K.

Corollary 2.4.3. Let L/K be an extension of number fields. If a prime p of K ramifies in L, then
p lies above a prime of N dividing ∆L. In particular, only finitely many primes p of K ramify in L.

Exercise 2.16. Deduce this corollary from the previous theorem.
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3 Zeta and L-functions

In this section we will use analytic methods to (i) develop a formula for class numbers, and (ii)
use this to prove Dirichlet’s theorem in arithmetic progressions: that any arithmetic progression:
a+m, a+ 2m, a+ 3m, . . . contains infinitely many primes gcd(a,m) = 1.

This chapter follows [Cohn], though our presentation is reversed from his, together with some
supplementary material taken from various other sources. More general treatments are found in
[Marcus] and [Neukirch], though they do not do everything we will do here.

3.1 Zeta functions

Recall one defines the Riemann zeta function by

ζ(s) =
∑ 1

ns
. (3.1)

One knows from calculus that this converges for s > 1 (compare with∫ ∞
1

1

xs
dx =

x1−s

1− s

]∞
x=1

=
1

1− s
<∞.)

Euler observed that (for s > 1) one also has the product expansion

ζ(s) =
∑ 1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏ 1

1− p−s
.

Here p runs over all primes of N. The last equality just follows from the formula for a geometric
series:

∑∞
n=0 a

n = 1
1−a if |a| < 1. To see the why product expansion (middle equality) is valid, it’s

perhaps easiest to first notice that it is formally true for s = 1,∗ where it says∑ 1

n
=

(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)(
1 +

1

5
+

1

52
+

1

53
+ · · ·

)
· · · (3.2)

What does this (formal) infinite product on the right mean? It just means a (formal) limit of the
sequence of finite subproducts:

1 +
1

2
+

1

22
+

1

23
+ · · · =

∑
n∈N2

1

n

(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)
= 1 +

1

2
+

1

3
+

1

2 · 3
+

1

22
+

1

32
+

1

22 · 3
+

1

2 · 32
+ · · ·

=
∑
n∈N2,3

1

n

∗When s = 1, neither side of the equality actually converges, but the explanation for why both sides should be
equal is perhaps more transparent. Here “formally” is not to be confused with rigorously—we mean we can formally
manipulate one side to get to the other.
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(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)(
1 +

1

5
+

1

52
+

1

53
+ · · ·

)
=

∑
n∈N2,3,5

1

n

...

where Np1,p2,...,pk =
{
pe11 p

e2
2 · · · p

ek
k : ei ∈ N ∪ {0}

}
, i.e., Np1,p2,...,pk is the set of natural numbers

which only contain the primes p1, . . . pk in their prime decomposition.
We now prove rigorously that the formal product expansion for ζ(s) given above is valid for

s > 1.

Definition 3.1.1. Let {p} denote the set of primes of N. Let ap ∈ C for each p. We define∏
p

ap = lim
n→∞

∏
n<x

ap.

Hence we will say
∏
ap converges (diverges) if the limit on the right does. We say

∏
ap con-

verges absolutely if
lim
n→∞

∏
i<n

api

converges for any ordering {p1, p2, p3, . . .} of the set of primes {p}.

In other words, a product converges absolutely if it converges regardless of the way we order
the terms in the product. One can of course similarly define infinite product over any denumerable
index set

Example 3.1.2. If some ap = 0, then after some point (no matter how the p’s are ordered), we
will have a finite subproduct of

∏
ap = 0. Thus

∏
ap will converge to 0 absolutely.

Note that if every ap > 0, then log(
∏
ap) =

∑
log ap. An immediate consequence is that

∏
ap

converges (absolutely) if and only if the series
∑

log ap converges (absolutely).

Proposition 3.1.3. Let (an)∞n=1 be a totally multiplicative sequence of complex numbers, i.e., amn =
aman for any m,n ∈ N, and assume a1 = 1. If

∑
an converges absolutely, then so does

∏
p

1
1−ap

and
∞∑
n=1

an =
∏
p

1

1− ap
,

where the product is taken over all primes p of N.

Proof. Suppose
∑
an converges absolutely. Let ε > 0. Then for some N ∈ N we can say∑

n>N

|an| < ε.

Let {p1, p2, . . .} be any ordering of the set of primes of N. Then there is some K ∈ N such that
{p1, . . . , pK} contains all ≤ N . Observe

K∏
i=1

1

1− api
=

K∏
i=1

(
1 + ap + a2

p + · · ·
)

=
∑

n∈Np1,...,pK

an.
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Since Np1,...,pK contains 1, . . . , N , we have∣∣∣∣∣
∞∑
n=1

an −
K∏
i=1

1

1− api

∣∣∣∣∣ ≤
∣∣∣∣∣∑
n>N

an

∣∣∣∣∣ ≤ ∑
n>N

|an| < ε.

Corollary 3.1.4. For any s > 1 the Euler product expansion

ζ(s) =
∏ 1

1− p−s
(3.3)

is valid.

Proof. Apply the proposition with an = n−s.

The Euler product expansion demonstrates that the zeta function captures information about
primes. In fact, it contains a surprising amount of information about primes. The simplest appli-
cation of the zeta function to the study of primes is Euler’s proof of the infinitude of primes.

Theorem 3.1.5. There are infinitely many primes.

Proof. Assume there are finitely many primes, p1, . . . , pk. Then

ζ(s) =
1

1− p−s1

· 1

1− p−s2

· · · 1

1− p−sk
→ 1

1− 1/p1
· 1

1− 1/p2
· · · 1

1− 1/pk
<∞

as s→ 1. On the other hand
ζ(s) =

∑ 1

ns
→
∑ 1

n
=∞

as s→ 1. Contradiction.

Exercise 3.1. For any integer k > 1, one can show 1/ζ(k) represents the probability that k “ran-
domly chosen” integers are coprime (have gcd 1). Let f(x) = x on [−π, π), compute the Fourier
coefficients and apply Parseval’s identity. Use this to compute ζ(2), and hence determine the proba-
bility that 2 randomly chosen integers are coprime. (Alternatively, you can try to derive the product
expansion

sinx

x
=

∞∏
n=1

(
1−

( x

nπ

)2
)
,

and look at the x2 coefficient to find ζ(2).)

We will briefly discuss some deeper connections of ζ(s) to the study of primes, but first let us
give a generalization of the Riemann zeta function.

Definition 3.1.6. Let K be a number field. The Dedekind zeta function for K is

ζK(s) =
∑
a

1

N(a)s
,

for s > 1 where a runs over all (nonzero) ideals of OK .
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As before, one can show this series indeed converges for all s > 1, and we have an Euler product
expansion

ζK(s) =
∏
p

1

1−N(p)−s

valid for s > 1 as above. Hence the Dedekind zeta function can be used to study the prime ideals
of of K.

We remark that another way to write the above definition is

ζK(s) =
∑ an

ns

where an denotes the number of ideals of K with norm n (convince yourself of this). Consequently,
the Dedekind zeta function can be used to study the number of ideals of norm n. However, we will
be interested in it for its applications to the class number hK of K.

3.2 Interlude: Riemann’s crazy ideas

Riemann published a single paper in number theory, On the Number of Primes Less Than a Given
Magnitude in 1859, which was 8 pages long, contained no formal proofs, and essentially gave birth
to all of analytic number theory. We will summarize the main ideas here.

We only defined the Riemann zeta function for real s > 1, but in fact Riemann considered it for
complex values of s. In general if a > 0 and z ∈ C, then one defines

az = ez ln a

where
ez =

∑ zn

n!
.

This allows one formally to make sense of the definition

ζ(s) =
∑ 1

ns

for s ∈ C, and one can show the sum actually converges provided Re(s) > 1. Riemann showed that
ζ(s) can be extended (uniquely) to a differentiable function on all of C except at s = 1, where ζ(s)
has a pole (must be ∞). However the above series expression is only valid for Re(s) > 1.

Riemann showed that ζ(s) has a certain symmetry around the line Re(s) = 1
2 , namely one has

the functional equation
ζ(1− s) = Γ∗(s)ζ(s)

where Γ∗(s) is a function closely related to the Γ function. The functional equation says one can
compute ζ(1− s) in terms of ζ(s), so we can indirectly use the series for ζ(s) to compute ζ(s) when
Re(s) < 0. The region 0 < Re(s) < 1 is called the critical strip, and the central line of symmetry
Re(s) = 1

2 is called the critical line.
Let {ρ} denote the set of zeroes of ζ(s) inside of the critical strip. There are countably (infinitely)

many, and let us order them by their absolute value. Let

f(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + · · ·
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where π(x) is the number of primes less than x. Riemann discovered the following formula for f(x)

f(x) = Li(x)−
∑
ρ

Li(xρ)− log(2) +

∫ ∞
x

dt

t(t2 − 1) ln t

where Li(x) =
∫ x

0
dt
ln t . Hence this formula relates π(x) with the (values of Li at the) zeroes of ζ(s).

In fact, using Möbius inversion, one can rewrite π(x) in terms of f(x) (and therefore the zeroes of
ζ(s)) as

π(x) = f(x)− 1

2
f(x1/2)− 1

3
(x1/3)− · · ·

Essentially this says the following: if we know exactly where all the zeroes ρ of ζ(s) are we know
exactly where the primes are (these are the places on the real line where π(x) jumps).

Here is where Riemann made his famous conjecture, the Riemann hypothesis, that all the zeroes
of ζ(s) lying in the critical strip actually lie on the critical line. (It is easy to see from series
expansion that ζ(s) 6= 0 for Re(s) ≥ 1. Then by the functional equation, ζ(1− s) = 0 for Re(s) > 1
if and only if Γ∗(s) = 0, which happens precisely for s a positive odd integer. Thus the only zeroes
of ζ(s) outside of the critical strip, are the so-called trivial zeroes occurring when s = −2k, k ∈ N.)

In 1896, Hadamard and de la Vallée Poussin used Riemann’s ideas to prove the prime number
theorem, that

π(x) ∼ Li(x) ∼ x

lnx

as x → ∞. (This notation means π(x) is approximately x
lnx for x large.) This is important, for

example, in cryptography where one wants to know that the primes don’t get too thinly spread out,
so that large primes provide suitably secure keys for RSA. The Riemann hypothesis is equivalent
to the “best possible bound” for the error term in the prime number theorem, precisely that

|π(x)− Li(x)| < 1

8π

√
x ln(x)

for x ≥ 2657. The Riemann hypothesis has natural generalizations to Dedekind zeta functions
and L-functions (see below). Due to a host of applications, the generalized Riemann hypothesis is
considered one of the most important open problems in mathematics.

3.3 Dirichlet L-functions

Let m ∈ N. In 1837 (before Riemann!)∗, Dirichlet introduced L-functions as a generalization of
the Riemann zeta function in order to study the primes mod m. In particular, Dirichlet used these
L-functions to show that there are infinitely many primes ≡ a mod m, which will be one of the
main results of this chapter. This result had been conjectured by Euler for a = 1 and by Legendre
in general.

Let’s start with the example of p ≡ 1 mod 4. (Last semester we were able to use a trick together
with the first supplemental law of quadratic reciprocity to show there are infinitely many primes
p ≡ 1 mod 4, and the case of p ≡ 3 mod 4 was an exercise using a different trick. Legendre tried
to use quadratic reciprocity to treat the general case, but was unsuccessful, and as far as I know,
there is no proof of the general case which does not use Dirichlet L-functions.)
∗Riemann’s zeta function was studied before Riemann as a function of natural numbers by Euler.
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Knowing Euler’s proof of the infinitude of primes, one might be tempted to try to define a series
by ∏

p≡1 mod 4

1

1− p−s
.

This expands out as a sum ∑
n∈N1

1

ns

where N1 is the set of all natural numbers which only contain primes ≡ 1 mod 4 in their prime
factorization. If the number of such primes is finite then the product expansion converges as
s→ 1, and one would like to show the series expansion diverges to obtain a contradiction. However
summing over N1 is not a natural thing to do and there is no simple way to directly analyze it.
Hence we will have to be a little more subtle than this.

Dirichlet, being smarter than this, had the following idea using characters. Let’s first recall a
couple things about characters of finite abelian groups.

Definition 3.3.1. Let G be a finite abelian group. A character (or 1-dimensional representa-
tion) of G is a group homomorphism into C×. The set of characters of G is denoted by Ĝ, and is
called the dual of G.

Exercise 3.2. Let G be a finite abelian group. Let χ, λ ∈ Ĝ.
(i) Show χλ, defined by (χλ)(g) = χ(g)λ(g), is also in Ĝ.
(ii) Show χ, defined by χ(g) = χ(g), is also in Ĝ. (Here the bar denotes complex conjugation.)
(iii) For any g ∈ G, show χ(g) is a (not necessarily primitive) n-th root of unity† where n is the

order of g in G.
(iv) Deduce that χχ = χ0, where χ0 denotes the trivial character, i.e., χ0(g) = 1 for all g ∈ G.
(v) Conclude that Ĝ is an abelian group.

Proposition 3.3.2. Let G be finite abelian group. Then Ĝ ' G.

Proof. Let us first prove the proposition in the case G = Cn (the cyclic group of order n). Let α be
a generator of G. By (iii) of the exercise above, if χ ∈ Ĝ, then χ(α) must be an n-th root of unity
ζ. Furthermore any n-th root of unity ζ defines (uniquely) a character on G by setting χ(αk) = ζk.
(Observe this is character, and that nothing else can be.) In other words, a character is determined
by what it does to a generator of G.

Let ζn denote a primitive n-th root of unity (take ζn = e2πi/n if you wish). There are n n-th
roots of unity, given by ζ0

n = 1, ζn, ζ
2
n, . . . , ζ

n−1
n . Hence there are precisely n distinct character of

G, χ0, χ1, χ2, . . . , χn−1 given by χi(α) = ζin. It is obvious then that (χiχj)α = ζi+jn , i.e., χiχj =
χi+j mod n. Hence Ĝ ' Z/nZ ' Cn.

Now that we have prove the proposition in the case where G is cyclic, let us assume G is an
arbitrary finite abelian group. Then we know by the classification of such groups, G '

∏
Crini

. Set
ζni = e2πi/ni and let αi ∈ G be a generator for Cni . As above, we can define characters χij on Cni

by χij(αi) = ζjni . We can extend each χij to a character on G by setting χij(αk) = 1 whenever
i 6= k and using multiplicativity. In other words, view and g ∈ G as

g = (αe11 , α
e2
2 , . . . , α

et
t )

†ζ ∈ C is a primitive n-th root of unity if ζn = 1 but ζd 6= 1 for any d|n. For example there are four 4-th roots of
unity: ±1,±i, but only ±i are primitive.
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and set
χij(g) = ζjeini

.

Hence for each i, we get disjoint subgroups of Ĝ each isomorphic to Ĉni ' Cni . It is straightforward
to check that any character of G is a product of some χij ’s, i.e., we have

Ĝ '
∏

Ĉni '
∏

Cni ' G.

We will be interested in the case where G = (Z/mZ)×.

Example 3.3.3. Suppose G = (Z/2Z)×. Then G = {1} = C1 so Ĝ = {χ0}. In other words, the
only character of G is the trivial one χ0 which sends 1 to 1.

Example 3.3.4. Suppose G = (Z/3Z)×. Then G = {1, 2} ' C2 (here 1 and 2 represent the
corresponding congruence classes in Z/3Z). Since 2 generates G and has order 2, there are two
possibilities for characters:

χ0 : 1 7→ 1, 2 7→ 1

and
χ1 : 1 7→ 1, 2 7→ −1

So Ĝ = {χ0, χ1} ' C2.

Note that G = (Z/4Z)× ' C2 also, so this case is essentially the same as (Z/3Z)×.

Example 3.3.5. Suppose G = (Z/5Z)×. Then G = {1, 2, 3, 4} ' C4. Here 2 generates G, so a
character of G is determined by what 4-th root of unity 2 maps to. Explicitly, we have 4 characters,
whose values are read off of the following character table:

1 2 3 4

χ0 1 1 1 1
χ1 1 −1 −1 1
χ2 1 i −i −1
χ3 1 −i i −1

Looking at this table, it is easy to see Ĝ is cyclic of order four, generated either by χ2 or χ3.

Exercise 3.3. Determine all characters of (Z/15Z)× and (Z/16Z)×. (Write them down in character
tables like our (Z/5Z)× case. Feel free to order the columns and rows however you find easiest.)

Theorem 3.3.6. Let CG = {f : G→ C} denote the space of complex valued functions from a finite
abelian group G into C (the group algebra of G). This is a |G|-dimensional vector space over C.
The characters χ ∈ Ĝ form a C-basis for CG.

We omit the proof, and in fact we do not need this precise result, but it is helpful for motivation.
What this means for us is the following. We want to study the primes p in a congruence class mod
m. As long as p - m, we have p ≡ a mod m for some a ∈ (Z/mZ)×. Let {χ} denote the the set of
characters of G = (Z/mZ)× and fix a ∈ (Z/mZ)×. Consider the function f ∈ CG given by

f : (Z/mZ)× → C
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f(x) =

{
1 x = a

0 else.

In other words, f tells me if p mod m is a or not. What the above says is that

f(x) =
∑

cχχ(x)

for some cχ ∈ C. Hence knowing χ(p mod m) for all χ tells us whether p ≡ a mod m or not. Slightly
more generally, the above theorem says knowing χ(p mod m) for all χ and p - m is the same as
knowing p mod m for all p - m. Put another way, the characters of (Z/mZ)× distinguish all the
(invertible) congruence classes mod m. This suggest it is possible to study the primes ≡ a mod m
using the characters of (Z/mZ)×. To somehow connect this with something like the zeta function,
one actually wants to think of the characters of (Z/mZ)× as “characters” of Z.

Definition 3.3.7. Let χ be a character of (Z/mZ)×. We extend χ to a function

χ : Z→ C

by

χ(a) =

{
χ(a mod m) if a is invertible mod m
0 else.

The resulting function χ : Z→ C is called a Dirichlet character mod m.

Note that the values of χ only depend upon congruence classes modm. Then our remarks before
the definition can be rephrased as follows: knowing the value of χ(p) for every Dirichlet character
χ mod m and every p - m is equivalent to knowing the value of p mod m for every p - m.

Example 3.3.8. Consider χ2 from our earlier (Z/5Z)× example. Then the corresponding Dirichlet
character is

χ2(a) =



0 a ≡ 0 mod 5

1 a ≡ 1 mod 5

i a ≡ 2 mod 5

−i a ≡ 3 mod 5

−1 a ≡ 4 mod 5.

Exercise 3.4. Let χ be a Dirichlet character mod m. Then χ(ab) = χ(a)χ(b) for any a, b ∈ Z.

Definition 3.3.9. Let χ be a Dirichlet character modm. ThenDirichlet L-function (or L-series)
for χ is given by

L(s, χ) =

∞∑
n=1

χ(n)

ns
. (3.4)

for s > 1.

Note that since |χ(n)| ≤ 1 for all n (see Exercise 3.2(iii)), we can say

|L(s, χ)| ≤
∑ 1

ns
= ζ(s) (s > 1),
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hence the series defining L(s, χ) converges absolutely for s > 1. Because χ is multiplicative by the
exercise above, the same expansion trick we used for ζ(s) above works to give a product expansion

L(s, χ) =
∏
p

1

1− χ(p)p−s
, (3.5)

which again is valid for s > 1. (Just apply Proposition 3.1.3 with an = χ(n)
ns .)

Just like ζ(1) =∞ told us there were infinitely many primes, the most important value of L(s, χ)
for primes in arithmetic progressions is L(1, χ) (which is not typically ∞—it will be if and only if
χ = χ0 is the trivial character mod m).

Example 3.3.10. To return to the case of studying primes ≡ 1 mod 4, look at the Dirichlet char-
acters mod 4. Since (Z/4Z)× ' C2, there are only two Dirichlet characters mod 4. We can write
them as

χ0(a) =

{
0 a ≡ 0, 2 mod 4

1 a ≡ 1, 3 mod 4

(the trivial character) and

χ1(a) =


0 a ≡ 0, 2 mod 4

1 a ≡ 1 mod 4

−1 a ≡ 3 mod 4

(the nontrivial character). Then, for s > 1, we have

L(s, χ0) =
∑
n odd

1

ns
=
∏
p 6=2

1

1− p−s

and
L(s, χ1) =

∑
n≡1 mod 4

1

ns
−

∑
n≡3 mod 4

1

ns
=

∏
p≡1 mod 4

1

1− p−s
·

∏
p≡3 mod 4

1

1 + p−s
.

Hence these L-functions are not too far from our original naive suggestion, and they are not too
difficulty (though not trivial) to analyze. We also note that L(s, χ0) is essentially ζ(s)—it is off by
a single factor

ζ(s) =
1

1− 2−s
L(s, χ0),

so L(1, χ0) = (1− 2−1)ζ(1) =∞.
From the series expansion of L(s, χ1) it’s not to hard to see that

L(1, χ1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · = π

4

(The latter equality, known as Leibnitz’s formula, follows from let x → 1 in the Taylor series for
arctan(x).) Now we can use this to show there are infinitely many primes ≡ 1 mod 4 and ≡ 3 mod 4.

Suppose there were finitely many primes p ≡ 3 mod 4. Then the above formula for L(s, χ1)
shows

ζ(s)/L(s, χ1) =
1

1− 2−s

∏
p≡3 mod 4

1 + p−s

1− p−s
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for s > 1. But then letting s→ 1 yields

1

1− 1
2

·
∏

p≡3 mod 4

1 + 1
p

1− 1
p

= ζ(1) · 4

π
=∞,

which is a contradiction since the left hand side must be finite if there are only finitely many p ≡
3 mod 4.

Similarly suppose there were finitely many primes p ≡ 1 mod 4. Then

ζ(s)L(s, χ1) =
1

1− 2−s

 ∏
p≡1 mod 4

1

1− p−s

2 ∏
p≡3 mod 4

1

1− p−2s

=
1

1− 2−s

 ∏
p≡1 mod 4

1

1− p−s

2ζ(2s)(1− 2−2s)
∏

p≡1 mod 4

(1− p−2s)


= (1 + 2−s)

∏
p≡1 mod 4

1− p−2s

(1− p−s)2
· ζ(2s).

for s > 1. Letting s → 1, we see the right hand side is finite, since ζ(2) = π2

6 < ∞ and the
product has only finitely many terms, but the left hand side approaches ζ(1)/L(s, χ1) = 4

π∞ = ∞,
a contradiction.

Hence just knowing that 0 < |L(1, χ1)| < ∞ allows us to conclude there are infinitely many
primes p ≡ 1 mod 4 and infinitely many p ≡ 3 mod 4.

Theorem 3.3.11. (Dirichlet’s theorem on arithmetic progressions) Suppose gcd(a,m) = 1.
Then there are infinitely many primes p ≡ a mod m.

Proof. Let {χ} be the set of Dirichlet characters modm. We consider the complex logarithm defined
by

log(1 + z) = z − z2

2
+
z3

3
− · · · .

for |z| < 1. Then for any χ, we have∣∣∣∣log

(
1

1− χ(p)p−s

)∣∣∣∣ = | log(1− χ(p)p−s)| =
∣∣∣∣χ(p)

ps
+
χ(p2)

2p2s
+
χ(p3)

3p3s
+ · · ·

∣∣∣∣ .
It follows from the Taylor expansion of log(1 + x) that

log

(
1

1− χ(p)p−s

)
= − log(1− χ(p)p−s) =

χ(p)

ps
+ εp(s)

where εp(s) is an error term satisfying |εp(s)| < 1
p2s . Hence

logL(s, χ) =
∑
p

χ(p)

ps
+ εχ(s)

where εχ(s) =
∑

p εp(s) so |εχ(s)| <
∑ 1

p2s .
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Now consider the sum∑
χ

χ−1(a) logL(s, χ) =
∑
χ,p

χ−1(a)χ(p)

ps
+ ε(s) (3.6)

where ε(s) =
∑

χ χ
−1(a)εχ(s) is an error term. Now we appeal to a fundamental result from repre-

sentation theory (see exercise below), the orthogonality relation for characters. This is essentially
a refinement of Theorem 3.3.6, saying that the characters Ĝ of a group G form an orthogonal basis
for CG. In our case, the orthogonality relation says

∑
χ

χ−1(a)χ(p) =

{
φ(m) a ≡ p mod m
0 else.

(Here φ(m) = |(Z/mZ)×|.) Hence by first summing over χ, we see the only p that contribute are
those ≡ a mod m. In other words∑

χ

χ−1(a) logL(s, χ) = φ(m)
∑

p≡a mod m

χ(p)

ps
+ ε(s). (3.7)

It is straightforward to check that the error term ε(s) remains bounded as s→ 1 (exercise below).
Thus if there are only finitely many primes p ≡ a mod m, then the right hand side converges as
s→ 1. In other words, it suffices to show the left hand diverges when s→ 1.

Consider the trivial character χ0. Then

L(s, χ0) =
∏
p-m

1

1− p−s
=
∏
p|m

(1− p−s) · ζ(s),

hence L(s, χ0)→
∏
p|m(1− p−1) · ζ(1) =∞ as s→ 1. Thus logL(s, χ0)→∞ as s→ 1. This means

the sum (3.6) must tend to ∞ as s→ 1 provided no single term χ−1(a) logL(s, χ)→ −∞ as s→ 1.
This follows from the fact that L(s, χ) 6= 0, which is the content of Proposition 3.4.7 in the next
section.

The fact that L(s, χ) 6= 0 follows from Dirichlet’s class number formula, which is itself of great
interest. Historically, Dirichlet proved his class number formula, and used this to prove his theorem
on arithmetic progressions, though now there are other proofs that L(1, χ) 6= 0. We will follow
Dirichlet’s approach (at least the presentation in [Cohn]) and prove the class number formula, and
use this to conclude the proof of Theorem 3.3.11 in the next section.

Exercise 3.5. Let G = Z/nZ. Let a, b ∈ G. Show

∑
χ∈Ĝ

χ−1(a)χ(b) =

{
|G| a = b

0 else.

(Hint: use the fact that we know explicitly what the characters are as in the proof of Proposition
3.3.2.) This proves the orthogonality relation we used above in the case of cyclic groups.

Exercise 3.6. Check that the error term ε(s) appearing in the proof is bounded as s→ 1.
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3.4 The class number formula

The class number formula will fall out of analysis of the Dedekind zeta function. Let K = Q(
√
d)

where d 6= 1 is squarefree. Let ∆ = ∆K . Recall that for s > 1,

ζK(s) =
∏
p

1

1−N(p)−s
.

If p|p where p is a prime of N, then N(p) = p if p is split or ramified and N(p) = p2 if p is inert.
If p splits in K there are 2 prime ideals p lying above p, and otherwise there is just 1. So we can
rewrite

ζK(s) =
∏

p ramified

1

1− p−s
∏
p split

(
1

1− p−s

)2 ∏
p inert

1

1− p−2s

=
∏

p ramified

1

1− p−s
∏
p split

(
1

1− p−s

)2 ∏
p inert

(
1

1− p−s

)(
1

1 + p−s

)
=
∏
p

1

1− p−s
∏
p split

1

1− p−s
∏
p inert

1

1 + p−s

= ζ(s)
∏
p split

1

1− p−s
∏
p inert

1

1 + p−s
.

Note that the two products on the right, look like one of Dirichlet’s L-functions. In fact, we know
p splits in K if and only if

(
∆
p

)
= 1, and p is inert in K if and only if

(
∆
p

)
= −1. Hence if we extend

the Kronecker symbol
(

∆
p

)
to a function from Z→ C by

χ∆(n) =


0 gcd(n,∆) > 1(

∆
p1

)e1(∆
p2

)e2 · · · (∆
pk

)ek n > 0, n = pe11 p
e2
2 . . . pekk and gcd(n,∆) = 1

χ∆(−n)χ∆(|∆| − 1) n < 0.

One easily checks that χ∆ is a totally multiplicative function on Z which depends only upon con-
gruences classes mod ∆. Restricting to (Z/∆Z)× gives only nonzero values, so we get a (group)
character of (Z/∆Z)×. In other words, χ∆ is a Dirichlet character mod ∆, and one has (for s > 1)

L(s, χ∆) =
∏

χ∆(p)=(∆
p)=0

1 ·
∏

χ∆(p)=(∆
p)=1

1

1− p−s
·

∏
χ∆(p)=(∆

p)=−1

1

1 + p−s
.

In other words, we have shown

Lemma 3.4.1. For s > 1,
ζK(s) = ζ(s)L(s, χ∆).

Theorem 3.4.2. (Dirichlet’s class number formula for imaginary quadratic fields) Let
K = Q(

√
d) where d < 0 is squarefree. Then

L(1, χ∆) = lim
s→1

ζK(s)

ζ(s)
=

2πhK

w
√
−∆

,

where w is the number of roots of unity in OK , i.e., w = 6 if d = −3, w = 4 if d = −1 and w = 2
otherwise.
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Theorem 3.4.3. (Dirichlet’s class number formula for real quadratic fields) Let K =
Q(
√
d) where d > 1 is squarefree. Then

L(1, χ∆) = lim
s→1

ζK(s)

ζ(s)
=

2 log η hK√
∆

,

where η is the fundamental unit in OK .

(For us, the fundamental unit η of OK where K is real quadratic is the unique unit η > 1 such
that any unit of OK is of the form ±ηm for some m ∈ Z.)

The quantity lims→1
ζK(s)
ζ(s) is called the residue of ζK(s) at s = 1. The idea is that while ζK(s)

and ζ(s) both have a simple pole at s = 1∗, these poles should cancel in the quotient to give us a
finite number that tells us about the arithmetic of K. Indeed, the quotient ζK(s)/ζ(s) = L(1, χ∆)
is (or can be continued to) a well-defined continuous function at s = 1.

Example 3.4.4. Let ∆ = −4. The quadratic field of discriminant ∆ = −4 is K = Q(i), and
Dirichlet’s class number formula says

L(1, χ−4) =
2πhK

4
√

4
=
πhK

4
.

But we saw last section, that

L(1, χ−4) = 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
,

hence the class number formula provides another proof that hK = 1. Or if one wishes to approach
things from the opposite direction, we see that the fact that hK = 1 (which we proved in two
other ways before: by showing Z[i] is a Euclidean domain and by using Minkowski’s bound) implies
Leibnitz’s formula for π = 4(1− 1/3 + 1/5− · · · ).

Exercise 3.7. Using the fact that Q(
√
−3) has class number 1, determine value of the series

1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+ · · ·

from the class number formula.

Exercise 3.8. Analogous to the previous exercise, explicate the class number formula in the cases
Q(
√
−5) and Q(

√
2). (I.e., write down explicitly what the series L(1, χ∆) is and determine its value

from the class number formula.)

Now you may think above exercises, while interesting, are sort of the opposite of what we want.
Instead of using hK to determine L(1, χ∆), we would prefer to use L(1, χ∆) to determine the class
number, as we gave an alternate proof for hQ(i) = 1 in the example above. Thus we will need some
way of evaluating the series L(1, χ∆) =

∑
n≥1

χ∆(n)
n (which converges conditionally).

In fact, one can write down a finite expression for L(1, χ∆) to actually compute class numbers and
we will discuss this later. First we want to prove the class number formula. This immediately implies
L(1, χ∆) 6= 0 for any ∆. From this one can deduce that L(1, χ) 6= 0 for any Dirichlet character χ,
which will complete the proof of Dirichlet’s theorem on primes in arithmetic progressions.

The proof of the class number formula relies on simple geometric lattice point counting problems.
∗This means that they go to infinity at the “same rate” as 1

1−s
.
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Lemma 3.4.5. (Gauss) Suppose A,B,C are integers with B2 − 4AC < 0. The number λ(T ) of
lattice points (points in Z2) contained in the solid ellipse

Ax2 +Bxy + Cy2 ≤ T

satisfies

λ(T ) =
2πT√

4AC −B2
+O(

√
T )

Recall the big-O notation means the following: for f, g : R→ R, we say

f(x) = O(g(x))

if |f(x)| ≤ cg(x) for all x > X where X and c are some constants. Another way to say this is that
f(x) = O(g(x)) means lim supx→∞

|f(x)|
g(x) <∞ (assuming g is positive).

Proof. First we observe the area of the ellipse is 2πT√
4AC−B2

. To see this, note that there is a change
of variables (

x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
for some θ such that Ax2+Bxy+Cy2 = A′x′2+C ′y′2 for some A′, C ′. (In other words, we just rotate
the ellipse so its major and minor axes are on the x′ and y′ axes.) However since the determinant of
this transformation (a rotation matrix) is 1, the determinant B2−4AC of the form Ax2 +Bxy+Cy2

equals the determinant −4A′C ′ of the form A′x′2 + C ′y′2. (Just check this explicitly.) Since the
major and minor axes of the ellipse must have length 2

√
T/A′ and 2

√
T/B′, we know the area of

the ellipse is A(T ) = πT√
A′C′

= 2πT√
4AC−B2

.
Now we can tile R2 with squares, with each square having area one and centered about some

lattice point (x, y) ∈ Z2. Let m(T ) be the number of squares completely contained in our ellipse
Ax2 +Bxy +Cy2 ≤ T and M(T ) be the smallest number of squares which completely contain the
ellipse. Since λ(T ) is the number of squares whose center is contained in the ellipse, we clearly have

m(T ) ≤ λ(T ) ≤M(T ).

The point is that m(T ) and M(T ) are both roughly the area A(T ) of the ellipse. Precisely, let n(T )
denote the number of squares which intersect the boundary Ax2 + Bxy + Cy2 = T of the ellipse.
Note that m(T ) ≥ A(T )− n(T ) and M(T ) ≤ A(T ) + n(T ). (Draw a picture.) Thus

A(T )− n(T ) ≤ λ(T ) ≤ A(T ) + n(T )

for all n. So it suffices to show that
n(T ) = O(

√
T ).

Interchanging x and y if necessary, we may assume that A ≤ C, so the ellipse is wider in the
x-direction than it is tall in the y-direction. Then n(T ) ≤ 8 + 8

√
T/A = O(

√
T ) by the exercise

below.

Exercise 3.9. Show there are 4 points of slope ±1 on the ellipse Ax2 +Bxy+Cy2 = T with A ≤ C.
This breaks the ellipse up into 4 arcs. Show each arc intersects at most 2 + 2

√
T/A squares in the

tiling above by considering projections onto the x- and y- axes.
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To put the proof in simpler terms, the number of lattice points in an ellipse is essentially the
area of the ellipse, with some error term which is essentially determined by the arclength. If the
area increases like T , then the arclength will increase like

√
T , hence the O(

√
T ) bound on the error.

Let F (T ) denote the number of (nonzero) ideals I of OK with norm N(I) ≤ T . We know F (T )
is finite for any T .

Lemma 3.4.6. We have
F (T ) = κhKT +O(

√
T )

where

κ =

{
2π

w
√
−∆

∆ < 0
2 log η√

∆
∆ > 0,

using the notation above.

The number κ is called Dirichlet’s structure constant. So in this notation Dirichlet’s class number
formula reads (in both cases) L(1, χ∆) = κhK .

Proof. For a nonzero ideal I of OK , set G(I, T ) = {(α) ⊆ I : 0 < |N(α)| ≤ T}, i.e., G(I, T ) is the
number of principal ideals contained in I of (absolute) norm at most T . Suppose J is an ideal of
OK equivalent to I−1. Then IJ = (α) is a principal ideal contained in I. Conversely, any principal
ideal (α) ⊆ I is of this form α = IJ for J ∼ I−1 and we have

N(J ) ≤ T ⇐⇒ |N(α)| = N(J I) ≤ TN(I).

Hence G(I, TN(I)) is the number of ideals of norm ≤ T which are equivalent to I−1. Thus we may
write

F (T ) = G(I1, TN(I1)) +G(I2, TN(I2)) + · · ·+G(Ih, TN(Ih))

where I1, . . . , Ih are a set of ideal representatives for the class group ClK . Consequently, the lemma
follows if we can show

G(I, TN(I)) = κT +O(
√
T )

for any ideal I of OK .
Suppose ∆ < 0. Let β1, β2 be a Z-basis for I. Write α = β1x+ β2y. Then

N(α) = αα = Ax2 +Bxy + Cy2,

where A = N(β1), B = Tr(β1β2) and C = N(β2). Hence the number of α with norm ≤ TN(I) is
the number of lattice points (points of Z2) contained inside the solid ellipse Ax2 + Bxy + Cy2 ≤
TN(I). Note α and α′ generate the same principal ideal if and only if they differ by units. Hence
G(I, TN(I)) is 1

w times the number of nonzero lattice points inside the ellipse Ax2 +Bxy+Cy2 ≤
TN(I). This ellipse has discriminant B2 − 4AC = ∆[β1, β2] = ∆KN(I)2, so the desired estimate
of G(I, TN(I)) follows from Gauss’s lemma above.

Suppose ∆ > 0. The idea is basically the same. If β1, β2 is a Z-basis for I and α = β1x + β2y
then

|N(α)| = |Ax2 +Bxy + Cy2|

where A = N(β1), B = Tr(β1β2) and C = N(β2). However there will be infinitely many solutions
to |N(α)| ≤ TN(I) owing to the infinitude of units. But there is a one-to-one correspondence of
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elements α ∈ I satisfying 1 ≤ |α/α| < η2, α > 0 and principal subideals (α) of I. Hence we may
write G(I, TN(I)) as the number of nonzero solutions to the following system of equations:

−T ≤ Ax2 +Bxy + Cy2 ≤ T,

1 ≤ |β1x+ β2y

β1x+ β2y
| < η2,

β1x+ β2y > 0.

Since the discriminant B2 − 4AC of the quadratic form Ax2 +Bxy + Cy2 is positive, one gets not
an ellipse but a hyperbolic region from the first equation. The latter two equations leave us with
two finite hyperbolic sectors to count lattice points in. By setting up an appropriate integral one
can show the area is 2 log η T√

∆
. For more details, see [Cohn].

Now we can prove the class number formula.

Proof. We want to show L(s, χ∆) = κhK . Recall we can write ζK(s) =
∑ an

ns where an is the
number of ideals of norm n. Hence

ζK(s) =
F (1)

1s
+
F (2)− F (1)

2s
+
F (3)− F (2)

3s
+ · · ·

= F (1)

(
1

1s
− 1

2s

)
+ F (2)

(
1

2s
− 1

3s

)
+ · · ·

=
∞∑
T=1

F (T )

{
1

T s
− 1

(T + 1)s

}
.

For a fixed T , we have

1

T s
− 1

(T + 1)s
=

1

T s

{
1−

(
T

T + 1

)s}
=

1

T s

{
1−

(
1 +

1

T

)−s}

=
1

T s

{
1−

(
1− s

T
+
s(s+ 1)

2!T 2
− s(s+ 1)(s+ 2)

3!T 3
+ · · ·

)}
=

s

T s+1
+ ε(T, s).

The third line follows from the Taylor expansion of (1 + x)−s about x = 0, and the ε(T, s) is an
error term satisfying |ε(T, s)| < C s2

T s+2 for some constant C from Taylor’s theorem with remainder.
Hence

ζK(s) =

(
s
∞∑
T=1

·F (T )

T s+1
+
∞∑
T=1

F (T )ε(T, s)

)
.

Bear in mind that we will want to take the limit as s → 1+. By the above lemma, we know
F (T ) ≤ C1T for some C1. So for s in the range 1 < s < 2, we have

∞∑
T=1

F (T )|ε(T, s)| ≤ CC1s
2T

∞∑
T=1

1

T s+2
≤ 4C

∞∑
n=1

1

n2
= 4Cζ(2) <∞.
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Thus we may write

ζK(s) = s

∞∑
T=1

F (T )

T s+1
+ f.e.

where f.e. (finite error) represents an error term which remains finite as s → 1+. Again using the
lemma above, we have

ζK(s) = sκhk

∞∑
T=1

1

T s︸ ︷︷ ︸ ζ(s) + ε2(T )s
∞∑
T=1

1

T s+1
+ f.e.,

where ε2(T ) is an error term satisfying |ε2(T )| ≤ C2

√
T for some constant C2. Then the middle

term satisfies

|ε2(T )|s
∞∑
T=1

1

T s+1
≤ 2C2

∞∑
T=1

1

T s+
1
2

≤ 2C2ζ(s+
1

2
) ≤ 2C2ζ(

3

2
) <∞

for 1 < s < 2. So we may write
ζK(s) = sκhkζ(s) + f.e.

Dividing both sides by ζ(s) and sending s→ 1+ gives the class number formula.

Proposition 3.4.7. Let χ be a nontrivial Dirichlet character mod m. Then 0 < |L(1, χ)| <∞.

This result completes the proof of Dirichlet’s theorem on primes in arithmetic progressions.

Proof. If χ is nontrivial, one can show the series
∑ χ(n)

n for L(1, χ) converges conditionally as one
shows the alternating harmonic series converges in calculus. One shows that the series L(s, χ) =∑ χ(n)

ns converges uniformly for s ≥ 1 so that
∑ χ(n)

n actually equals lims→1 L(s, χ). The details are
standard analysis and we will omit them. It remains to show L(1, χ) 6= 0.

First suppose χ is a real character, i.e., the image of χ is contained in R. In particular, χ can
only take on the values ±1 and 0. We claim that χ(n) = χ∆(n) for some discriminant ∆ of a
quadratic field K.

Recall that (Z/mZ)× =
∏

(Z/peii Z)× where m =
∏
peii by the Chinese Remainder Theorem.

This means any Dirichlet character mod m is just a product of Dirichlet characters mod peii . Hence
it suffices to prove the claim when m = pe for some prime p. Assume p is odd. (The case p = 2 is
an exercise below.) In this case (Z/mZ)× is cyclic.

Let ξ be the restriction of χ to G = (Z/mZ)×, i.e., ξ is the group character of G = (Z/mZ)×

which gives rise to the Dirichlet character χ : Z → R. Note that ξ only takes on values ±1 so
ξ2 = 1. If ξ is trivial, then so is χ, contrary to our assumption. Hence ξ must be an element of
order 2 in Ĝ. (ξ is called a quadratic character.) But Ĝ ' G is cyclic, so there is only 1 element of
order 2 in Ĝ. Let K = Q(

√
p) if p ≡ 1 mod 4 and K = Q(

√
−p) if p ≡ 3 mod 4, so |∆| = p where

∆ = ∆K . Thus
(

∆
·
)
defines a quadratic character of (Z/pZ)×. Composing this with the natural map

from (Z/peZ)× → (Z/pZ)× (just taking elements mod p) gives a nontrivial quadratic character of
(Z/peZ)×, which must equal ξ since it has order 2 in Ĝ. Hence χ∆ = χ. (χ∆ is naturally a Dirichlet
character mod p, but it may also be regarded as a Dirichlet character mod m = pe.)

This proves the claim that any real Dirichlet character mod m is of the form χ∆ for some
quadratic field discriminant ∆ (which will sometimes be positive and sometimes be negative). But
the class number formula immediately implies that L(1, χ∆) 6= 0.
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Now suppose χ is a complex character, i.e., the image of χ is not contained in R. Note the
derivative

L′(s, χ) = −
∞∑
n=1

χ(n) log n

ns

exists and is continuous for s ≥ 1 (this series converges uniformly). If χ′ is a complex Dirichlet
character mod m such that L(s, 1) = 0, then by the mean value theorem for any s > 1 there is a
1 < s0 < s such that,

L(s, χ′) = L(s, χ′)− L(1, χ′) = L′(s0, χ
′)(s− 1).

Similarly we have L(s, χ′) = L′(s0, χ
′)(s − 1) where χ′ is the complex conjugate of χ′ (which is

easily seen to also be a Dirichlet character mod m). This means that L(s, χ′) and L(s, χ′) go to 0
at least as fast as s− 1 as s→ 1 (faster if L′(s0, χ

′) also goes to 0).
From (3.7) with a = 1, we have∑

χ

logL(s, χ) = φ(m)
∑

p≡1 mod m

1

ps
+ f.e.

where χ runs over all Dirichlet characters mod m and f.e. represents an error term which remains
finite as s → 1. As s → 1, both logL(s, χ′) and logL(s, χ′) approach −∞ at least as fast as
log(s − 1). But there is only one term on the left, logL(s, χ0) where χ0 is the trivial Dirichlet
character mod m, which goes to∞. It goes to∞ at the same rate as log ζ(s), which is − log(s− 1).
Hence the left hand side of the above equation goes to −∞, but the right hand side stays positive
(in fact goes to +∞), a contradiction.

Exercise 3.10. Suppose χ is a real Dirichlet character mod m = 2e. Using the fact that (Z/mZ)× '
C2 × C2e−2 for e > 1, show χ = χ∆ for ∆ the discriminant of some quadratic field.

Exercise 3.11. Determine all real nontrivial Dirichlet characters mod m for m = 3, 5, 6, 9, 15. For
each of these characters χ determine a quadratic field discriminant ∆ such that χ = χ∆. For which
χ we can choose a ∆ > 0 so that χ = χ∆ and when we can choose a ∆ < 0?

In the proof for real characters, we used a Dirichlet character mod p to get a Dirichlet character
mod pe.

Exercise 3.12. If χ is a Dirichlet character mod m, is it a Dirichlet character mod mn for any n?

We have now seen how to prove the class number formula (omitting some details in the real
quadratic case), and how one can use this to prove Dirichlet’s theorem on arithmetic progressions.
Of course, the natural thing to try to use this formula for is computing class numbers. Dirichlet
could do this by obtaining a finite expression for L(1, χ) using Gauss sums.

Let χ be a Dirichlet character mod m. We say χ is even if χ(−1) = 1 and χ is odd if
χ(−1) = −1. By multiplicativity, these conditions are equivalent to the conditions χ(−n) = χ(n)
and χ(−n) = −χ(n), respectively, justifying the terminology of even and odd. For k ∈ N ∪ {0},
define the k-th Gauss sum associated to χ to be

τk(χ) =
∑

a∈(Z/mZ)×

χ(a)e2πiak/m.
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From the definition, notice that the Gauss sums are something like “Fourier coefficients” for χ.
We will assume that χ is primitive, which means that χ is nontrivial and (regarded as a

character of (Z/mZ)×) it does not come from a character of (Z/dZ)× for any proper divisor d of
m. (If d|m, then any character of (Z/dZ)× gives a character of (Z/mZ)× just by composition with
the mod d map (Z/mZ)× → (Z/dZ)×.)

Exercise 3.13. Determine which Dirichlet characters mod m are primitive for m = 4, 8, 15. Find
a formula for the number of primitive Dirichlet characters mod m for any m ∈ N.

Proposition 3.4.8. Let χ be a primitive character mod m. Then

L(1, χ) =

{
πiτ1(χ)
m2

∑
k∈(Z/mZ)× χ

−1(k)k χ odd
− τ1(χ)

m

∑
k∈(Z/mZ)× χ

−1(k) log sin kπ
m χ even.

Proof. For s > 1, the absolute convergence of the L-series for L(s, χ) implies we can write

L(s, χ) =
∑

a∈(Z/mZ)×

{
χ(a)

∑
n∈mN+a

1

ns

}
.

Note the characters for the additive group (Z/mZ) are just given by ωk(a) = e2πiak/m for 0 ≤ k ≤
m− 1. Hence the character orthogonality relations, namely that

m−1∑
k=0

ωk(a)ω−1
k (n) =

{
m a ≡ n mod m
0 else,

tell us we can rewrite the inner sum above as

1

m

∞∑
n=1

∑m−1
k=0 ωk(a)ω−1

k (n)

ns
=

1

m

∞∑
n=1

∑m−1
k=0 e

2πi(a−n)k/m

ns
.

Plugging this in to our first equation gives

L(s, χ) =
1

m

m−1∑
k=0

{
τk(χ)

∞∑
n=1

ω−nk

ns

}
,

for s > 1, where ω = e2πi/m. It is easy to see the Dirichlet series
∑∞

n=1
ω−nk

ns converges for s > 1,
and as s → 1+, one can check it approaches − log(1 − ω−k). (Plugging in s = 1 gives the Taylor
expansion for − log(1− z) evaluated at z = ω−k.) This gives

L(1, χ) = − 1

m

m−1∑
k=1

τk(χ) log(1− ω−k).

(Up to here, we do not need that χ is primitive, just nontrivial.)
We again use some simple character theory to obtain that

τk(χ) =

{
χ−1(k)τ1(χ) gcd(k,m) = 1

0 gcd(k,m) > 1.
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Then
L(1, χ) = −τ1(χ)

m

∑
k∈(Z/mZ)×

χ−1(k) log(1− ω−k).

We can replace k with −k in the sum and pull out a χ(−1) to get

L(1, χ) = −χ(−1)τ1(χ)

m

∑
k∈(Z/mZ)×

χ−1(k) log(1− ωk).

Using the fact that

log(1− ωk) = log 2 + log sin
kπ

m
+

(
k

m
− 1

2

)
πi

one can write
L(1, χ) = −χ(−1)τ1(χ)

m

∑
k∈(Z/mZ)×

χ−1(k)

(
log sin

kπ

m
+
kπi

m

)
.

Note that the log 2 terms drop out since
∑

k χ
−1(k) = 0 by orthogonality relations. One finishes the

proof by checking that
∑

k χ
−1(k) log sin kπ

m = 0 if χ is odd and
∑

k χ
−1(k)k = 0 if χ is even.

This immediately gives a more useable version of Dirichlet’s class number formula. Though the
version we give below comes from one additional simplification—namely, since hK > 0, we only
need a formula for the absolute value |L(1, χ)| to compute hK . By taking absolute values in the
above proposition, one can get rid of the Gauss sum (which has absolute value

√
m). We omit the

details of the complete simplification, but in the end, one has the following.

Theorem 3.4.9. (Dirichlet’s class number formula, second form) Let K = Q(
√
d) be the

quadratic field of discriminant ∆. Then

hK =


1

2−χ∆(2)

∣∣∣∑1≤k<|∆|/2 χ∆(k)
∣∣∣ ∆ < 0,∆ 6= −3,−4

1
log η

∣∣∣∑1≤k<∆/2 χ∆(k) log sin kπ
∆

∣∣∣ ∆ > 0.

Here η denotes the fundamental unit of OK when ∆ > 0.

Note with this form of the class number formula, we can effectively compute the class number of
any quadratic field, and this is much easier than the approach via Minkowski’s bound (though in the
real quadratic case one needs to determine the fundamental unit). Additionally, since χ∆(n) = 0
unless gcd(n,∆) = 1, we may restrict the above sums to k relatively prime to ∆.

Example 3.4.10. For d = −2, i.e., K = Q(
√
−2), we see ∆ = −8,

χ∆(n) =

{
1 n odd
0 n even,

so
hK =

1

2
|χ∆(1) + χ∆(3)| = 1.

Exercise 3.14. Using the second form of the class number formula compute hK where K = Q(
√
d)

for d = −5,−6,−7,−10, 2.
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3.5 Postlude: Beyond Dirichlet

In this chapter we have shown (modulo a few details) two landmark results in number theory:

(i) Dirichlet’s theorem on primes in arithmetic progressions
(ii) Dirichlet’s class number formula for quadratic fields

both of which used Dirichlet L-functions. Subsequent key developments in number theory, general-
izing the above, are

(I) prime density theorems
(II) class number formulas for general number fields.

Let us first discuss the density theorems. Let P denote the set of primes in N, and S ⊆ P. We
say S has (natural) density‡ ρ if

lim
x→∞

| {p ∈ S : p < x} |
| {p ∈ P : p < x} |

= ρ.

Of course any finite set of primes will have density 0, but infinite sets of primes can have density
0 also. Using this notion, one can strengthen Dirichlet’s theorem on arithmetic progressions to the
following:

Theorem 3.5.1. Let m > 1 and a ∈ N such that gcd(a,m) = 1. Then the set of primes ≡ a mod m
has density 1

φ(m) .

In other words, the number of primes ≡ a mod m is the same for any a ∈ (Z/mZ)×. Or put
another way, the primes are distributed equally among the invertible congruence classes mod m.
For example, there are the same number or primes ≡ 1 mod 4 as there are ≡ 3 mod 4 (in the sense
of density). This is one example of a statistical regularity that prime numbers satisfy, despite their
apparent randomness. Proving this requires significantly more sophisticated analysis of Dirichlet
L-functions.

Another way to think about distribution of primes is in terms of how they split in extensions K
of Q. For example the above statement about the number of primes ≡ 1 mod 4 being the same as
the number of primes ≡ 3 mod 4 can be recast as saying the number of primes with split in Q(i) is
the same as the number of primes which are inert in Q(i). In fact the above theorem is essentially
equivalent to the following

Theorem 3.5.2. Let K be a quadratic field. The set of primes in P which split in K has density
1
2 , as does the set of primes which remain inert in K.

In other words, half the primes split in K and half remain prime in K, for any quadratic
field K. This is a special case of a very strong theorem, called the Chebotarev density theorem.
This provides much stronger regularity results about distributions of primes than just considering
congruence classes. We haven’t defined everything we need at this point to state the complete
theorem, but here is a (corollary of a) special case.

Theorem 3.5.3. Let K be a number field of degree n and S be the set of primes in P which split
completely in K. Then S has density ρ ≥ 1

n . Further ρ = 1
n if and only if K/Q is Galois.

‡There is another weaker notion of density, now called Dirichlet density, that coincides with natural density if the
natural density exists, which is essentially what Dirichlet originally considered.
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A proof of Chebotarev density involves a more general kind of L-function called an Artin L-
function. The basic idea is the following. Even though we have several Dirichlet characters mod
m for a given m, the most important Dirichlet characters are those of the form χ∆ where ∆ is the
discriminant of some quadratic field K.

On the other hand, if we start with some number field K, there is a natural group associated to
it, Gal(K/Q), and so one can look at the irreducible representations ρ of Gal(K/Q). Artin defined
an L-function L(s, ρ) associated to each such Galois representation ρ in order to study how the
primes split in K/Q (or more generally, an arbitrary extension L/K). This L-function has some
L-series expansion as well as an Euler product. If ρ is the trivial character of Gal(K/Q), then
L(s, ρ) is essentially ζK(s) (they have the same Euler product expansions except at a finite number
of primes).

In the case where K is quadratic, then Gal(K/Q) has only 2 irreducible representations, both
of dimension 1, i.e., both characters. If ρ is the nontrivial character of Gal(K/Q), then L(s, ρ) =
L(s, χ∆) where ∆ = ∆K . If ρ0 is the trivial character, then L(s, ρ0) = L(s, χ0) where χ0 is the
trivial Dirichlet character mod ∆. Hence the Artin L-functions are a generalization of (at least the
most important cases of) Dirichlet L-functions. In this quadratic case we have

L(s, ρ0)L(s, ρ) = L(s, χ0)L(s, χ) ' ζK(s)L(s, χ) = ζ(s),

where ' means equal up to a finite number of factors in the Euler product.
Similarly in the case of K a general number field, we have∏

ρ

L(s, ρ) ' ζK(s)
∏

ρ nontrivial

L(s, ρ) = ζ(s),

where ρ runs over all irreducible representations of Gal(K/Q). One has the following generalization
of Dirichlet’s class number formula.

Theorem 3.5.4. (General class number formula) Let K be a number field and {ρ} be the set
of irreducible representations of Gal(K/Q). Then∏

ρ nontrivial

L(1, ρ) = lim
s→1+

ζK(s)

ζ(s)
=

2r1(2π)r2R

w
√
|∆K |

hK ,

where r1 (resp. r2) is the number of real (resp. complex) embeddings of K, w is the number of roots
of unity in K, and R is the regulator of K.

The regulator is basically the volume of a certain lattice which comes up in Dirichlet’s units
theorem. This provides a way to compute and study class numbers for number fields of degree
greater than 2. In the case K = Q(ζp) where ζp is a primitive p-th root of unity, the class number
formula provides a way to determine which primes are regular, i.e., for which p is gcd(p, hK) = 1.
The significance of this is that Kummer was able to prove Fermat’s Last Theorem in the case of
regular prime exponents.

In fact, Wiles proved Fermat’s Last Theorem by (more or less) proving the Taniyama–Shimura
Conjecture, which is itself a statement about L-functions. To certain curves (irreducible smooth
cubic curves) called elliptic curves E one associates an L-function L(s, E). (It can be given by an
Euler product where the factor corresponding to the prime p is given by the number of points on
E mod p.) On the other hand, one also has L-functions L(s, f) attached to modular forms f , which
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are certain periodic functions on the upper half plane. (The Euler product factors are given by the
p-th Fourier coefficients in a certain Fourier expansion.) The Taniyama–Shimura Conjecture is that
every elliptic curve E corresponds to a modular form f in the sense that L(s, E) = L(s, f). (Going
from modular forms to elliptic curves is easier, and is known by work of Eichler and Shimura.)

While the whole story is rather involved, let me just say that it is difficult to directly compare el-
liptic curves and modular forms, but one can associate to both of these objects certain 2-dimensional
Galois representations. Thus to prove Taniyama–Shimura, one wants to show the Galois represen-
tations coming from elliptic curves are contained in the set of Galois representations coming from
modular forms. In a herculian endeavor, Wiles reduced (a sufficient part of) the Taniyama–Shimura
conjecture to a theorem of Langlands and Tunnell (also a very difficult result) which tells us every
(odd) 2-dimensional complex Galois representation ρ : Gal(K/Q) → GL2(C) with solvable image
corresponds to a modular form.

Let me emphasize 2 points:

1) L-functions provide a practical (though not typically easy) way to compare objects of different
types: geometric objects (curves and varieties), algebraic/arithmetic objects (number fields/Galois
representations) and analytic objects (modular/automorphic forms).

2) Galois representations and/or automorphic forms/automorphic representations provide a gen-
eral framework for studying many number theoretic problems. For example, if K is an abelian
extension of Q, i.e., K/Q is Galois with abelian Galois group, then all representations of Gal(K/Q)
are 1-dimensional. Hence the theory of 1-dimensional Galois representations provides a way to
study abelian extensions of Q, and contains the case of Dirichlet characters and everything we did
in this chapter. The fact that 1-dimensional Galois representations correspond to “1-dimensional”
automorphic forms is essentially class field theory, which provides a way to understand the abelian
extensions of a number field, and is the crowning achievement of classical algebraic number theory.

In this context, we can view the Taniyama-Shimura conjecture as a sort of “2-dimensional”
analogue of class field theory. A large amount of present work in modern number theory is studying
higher-dimensional analogues of class field theory (often called non-abelian class field theory). In
fact, this is essentially the area of research Ralf Schmidt, Ameya Pitale and I specialize in (and it is
related to Alan Roche and Tomasz Prezbinda’s research as well). For example, in my thesis I proved
that certain 4-dimensional Galois representations with solvable image correspond to automorphic
forms.

We will give a brief introduction to class field theory and higher-dimensional analogues in Part
III.
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Part II

The second part

4 Binary Quadratic Forms

A binary quadratic form (over Z) is a binary (two variable) polynomial of the form Q(x, y) =
ax2 + bxy + cy2, where a, b, c ∈ Z. This generalizes the forms x2 + ny2 that we looked at earlier,
and we will see that looking at general binary quadratic forms will help us with the study of the
forms x2 + ny2.

Recall the two main questions about a quadratic form Q(x, y) are:

(1) What numbers n are represented by Q, i.e., when is n = Q(x, y) solvable?

(2) If n is represented by Q, what are the solutions to n = Q(x, y)?

Using Gauss’s theory of composition of quadratic forms, we will be able to obtain very nice
results on these problems, though it is surprisingly difficult to give a complete explicit answer even
to the first question for an arbitrary binary quadratic form. It turns out the main obstruction to
answering these questions completely is closely related to the class groups of quadratic fields. In
light of this, there appears to be no elementary answer to (1) in general, though as we have seen
with x2 + dy2 for d = 1, 2, 3, 5, 6, there is in special cases. Nevertheless, the theory one obtains in
the end is quite beautiful and powerful.

In regards to the second question, for a given n and Q, it is not hard to answer the question
computationally. Further, using Gauss’s theory of composition, one can study the structure of
the solutions in general. However to explicitly say what the solutions are requires some explicit
computations. We will not focus so much on explicit computation, but rather general theory. In
particular, we will study the following related question.

(2’) What is the number rQ(n) of solutions to n = Q(x, y)?

Note this is somehow weaker, but much more reasonable to ask in general, than (2), and it also
contains (1) as a special case. Specifically, (1) just asks for which n is rQ(n) > 0. Modulo some
obstruction coming from class groups, Dirichlet proved a beautiful formula for rQ(n), which (apart
from this obstruction) answers (1) and (2’) at the same time.

Now you might have wondered if rQ(n) is always finite. The way we defined it in (2’), it is
not: for example x2 − 2y2 = n has infinitely many solutions for n = 1 because there are infinitely
many units in the ring of integer of Q(

√
2). However, one can still make sense of rQ(n) by counting

solutions “up to units.” If one does this, there will always be finitely many (possibly zero) solutions
to x2 − 2y2 = n for any n.

However, for simplicity of exposition, we will restrict to forms ax2 + bxy+ cy2 whose discrimi-
nant b2−4ac < 0. These will correspond to imaginary quadratic fields and the number of solutions
to ax2 + bxy+ cy2 = n will be finite for any n, so we can get by with our naive definition of rQ(n).

For the basic theory we will more or less follow a combination of [Cox], [Cohn] and [Buell]. For a
nice historical treatment of quadratic forms, see [Scharlau–Opolka]. Much of the material is rather
elementary, and in the interest of time, we will often not give complete proofs. Most treatments
of binary quadratic forms do not cover Dirichlet’s formula for rQ(n), but [Dirichlet], [Landau] and
[Hurwitz] are some sources.
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4.1 Reduction theory

Let Q(x, y) = ax2 + bxy + cy2 be a binary quadratic form (a, b, c ∈ Z). The discriminant of Q is
∆ = ∆Q = b2 − 4ac. This is a fundamental invariant of the form Q.

Exercise 4.1. Show there is a binary quadratic form of discriminant ∆ ∈ Z if and only if ∆ ≡
0, 1 mod 4. Consequently, any integer ≡ 0, 1 mod 4 is called a discriminant.

We say two forms ax2 + bxy+ cy2 and Ax2 +Bxy+Cy2 are equivalent if there is an invertible
change of variables

x′ = rx+ sy, y′ = tx+ uy, r, s, t, u ∈ Z

such that
a(x′)2 + bx′y′ + c(y′)2 = Ax2 +Bxy + Cy2.

Note that the change of variables being invertible means the matrix(
r s
t u

)
∈ GL2(Z).

In fact, in terms of matrices, we can write the above change of variables as(
x′

y′

)
=

(
r s
t u

)(
x
y

)
.

Going further, observe that

(
x y

)( a b/2
b/2 c

)(
x
y

)
= ax2 + bxy + cy2,

so we can think of the quadratic form ax2 + bxy+ cy2 as being the symmetric matrix
(
a b/2
b/2 c

)
.

It is easy to see that two quadratic forms ax2 + bxy + cy2 and Ax2 + Bxy + Cy2 are equivalent if
and only if (

A B/2
B/2 C

)
= τT

(
a b/2
b/2 c

)
τ (4.1)

for some τ ∈ GL2(Z).

Note that the discriminant of ax2 + bxy + cy2 is −4disc

(
a b/2
b/2 c

)
.

Lemma 4.1.1. Two equivalent forms have the same discriminant.

Proof. Just take the matrix discriminant of Equation (4.1) and use the fact that any element of
GL2(Z) has discriminant ±1.

What this means then is that GL2(Z) acts on the space F∆ of binary quadratic forms of dis-
criminant ∆ for any ∆. The importance of equivalent forms is in the following.

We say Q(x, y) ∈ F∆ represents an integer n if Q(x, y) = n for some x, y ∈ Z.

Lemma 4.1.2. Two equivalent forms represent the same integers.

65



Proof. This is obvious from the definition of equivalence—just make the change of variables!

To prove some basic results, it will be helpful to have more refined notions of equivalence and
representations of integers.

Definition 4.1.3. We say two forms ax2+bxy+cy2 and Ax2+Bxy+Cy2 are properly equivalent
if they satisfy Equation (4.1) for some τ ∈ SL2(Z). In this case we will write ax2 + bxy + cy2 ∼
Ax2 +Bxy + Cy2.

Recall SL2(Z) means 2×2 integer matrices of determinant 1, so GL2(Z) = SL2(Z)∪
(

0 1
1 0

)
SL2(Z)

since GL2(Z) consists of matrices of determinant ±1 In other words the quotient GL2(Z)/SL2(Z)

consists of two cosets. We can take
(

1 0
0 1

)
and

(
0 1
1 0

)
as a set of representatives for these cosets.

Clearly proper equivalence implies equivalence but the converse is not true. In fact, the notion
of proper equivalence turns out to give a nicer theory as we will see below.∗

Example 4.1.4. Using the matrix
(

1 0
0 −1

)
we see ax2 + bxy + cy2 is always equivalent to ax2 −

bxy + cy2. Sometimes they are properly equivalent (e.g., 2x2 ± 2xy + 3y2—see exercise below) and
sometimes they are not (e.g., 3x2 ± 2xy + 5y2—see exercise below).

Exercise 4.2. Determine the discriminants of Q1(x, y) = 2x2 + 2xy+ 3y2, Q2(x, y) = 2x2− 2xy+
3y2, Q3(x, y) = 3x2 + 2xy + 5y2 and Q4(x, y) = 3x2 − 2xy + 5y2. Show Q1 and Q2 are properly
equivalent but Q3 and Q4 are not. (If you have trouble, see the theorem below.)

Exercise 4.3. Fix a, b, c ∈ Z and let Q1(x, y) = ax2 + bxy + cy2 and Q2(x, y) = cx2 + bxy + ay2.
(i) Show Q1 and Q2 are equivalent.
(ii) If b = 0 show Q1 and Q2 are properly equivalent.
(iii) Can you find a, b, c so that Q1 and Q2 are equivalent by not properly equivalent? (One often

calls this improper equivalence.)

There are three types of binary quadratic forms Q(x, y) = ax2 + bxy + cy2 based on the sign of
the discriminant ∆ = b2 − 4ac:

1) If ∆ = 0, then Q factors into two linear forms and we say Q is degenerate. Otherwise Q
is nondegenerate. If ∆ = b2 − 4ac = 0, then Q(x, y) = (

√
ax +

√
cy)2 and it is easy to see what

numbers Q represents. Hence, one may just consider nondegenerate forms.

2) If ∆ < 0, then Q(x, y) has no real roots. In other words, considering x, y real, the graph of
z = Q(x, y) in R3 never crosses the z = 0 plane. Hence Q(x, y) takes on either only positive values
or negative values (and zero if x = y = 0). Accordingly we say, Q is either a positive definite
form (e.g., x2 + y2) or a negative definite form (e.g., −x2 − y2). Note positive definite implies
a, c > 0 and negative definite implies a, c < 0. (This is not if and only if: x2− 100000xy+ y2 is not
positive definite.) Since −Q will be positive definite whenever Q is negative definite, it suffices to
study the positive definite case.
∗For this reason, many authors use the term “equivalence of forms” to mean proper equivalence. If you consult

other references, take note of this.
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3) If ∆ > 0, then Q(x, y) has a real root and Q(x, y) takes on positive and negative values
for x, y ∈ Z. In this case, we say Q is an indefinite form. Note whenever a and c have different
sign (or one is 0), Q must be indefinite. The theory of indefinite forms is similar to the theory of
(positive) definite forms, but there are some technical differences which make it more complicated.
For simplicity, as well as the fact that positive definite forms tend to be of more interest, we will
restrict our study to positive definite forms, though we will make some comments about what
happens for indefinite forms along the way.

Hence, from now on, we assume all our forms are positive definite (in particular have
discriminant ∆ < 0) unless otherwise stated.

Definition 4.1.5. Let Q(x, y) = ax2 +bxy+cy2 be a (positive definite) form. We say Q is reduced
if

|b| ≤ a ≤ c

and b ≥ 0 if a = c or a = |b|.

Lagrange introduced the notion of reduced forms, and the point is the following.

Theorem 4.1.6. Any (positive definite) form Q is properly equivalent to a unique reduced form.

Proof. First we will show Q is properly equivalent to a reduced form ax2 + bxy + cy2. Suppose |b|
is minimal such that there is a form R(x, y) = ax2 + bxy + cy2 with Q ∼ R. If |b| > a, then there
exists m ∈ Z such that |2am+ b| < |b|. But this implies

R′(x, y) = R(x+my, y) = ax2 + (2am+ b)xy + (am2 + bm+ c)y2 ∼ R(x, y) = ax2 + bxy + cy2,

so R′ ∼ Q has smaller xy coefficient than ax2 + bxy + cy2, contradicting the choice of R. Hence
|b| ≤ a and similarly |b| ≤ c. If necessary, we may replace R(x, y) with R(y,−x) = cx2 − bxy + ay2

to assume |b| ≤ a ≤ c.
We also need to show we can take b ≥ 0 if a = c or a = |b|. If a = c, then the xy-coefficient

of either R(x, y) or R(y,−x) is nonnegative, so we may assume b ≥ 0. Similarly if b = −a, then
R(x+ y, y) = ax2 + ax+ cy2, so again we may assume b ≥ 0 (in fact b > 0 since a > 0). This shows
Q is properly equivalent to some reduced form R(x, y) = ax2 + bxy + cy2.

Now we show that this R is unique. Suppose not, so Q ∼ S where S = dx2 + exy + fy2 is also
reduced. Interchanging R and S if necessary, we may assume a ≥ d. Recall R ∼ S means we can
write

S(x, y) = R(rx+ sy, tx+ uy) = a(rx+ sy)2 + b(rx+ sy)(tx+ uy) + c(tx+ uy)2

with r, s, t, u ∈ Z such that ru− st = 1.
Since S clearly represents d and, we know R ∼ S, we know R represents d. Thus

d = ax2
0 + bx0y0 + cy2

0 ≥ a(x2
0 + y2

0) + bx0y0 ≥ a(x2
0 + y2

0)− a|x0y0| ≥ a|x0y0|

for some x0, y0 ∈ Z. Since d ≤ a we must either have x0y0 = 0 or |x0y0| = 1. We will finish the
proof in three cases.

First suppose y0 = 0. Then d = ax2
0 together with d ≤ a means x2

0 = 1 and d = a. Then the
x2-coefficient of S(x, y) is

ar2 + brt+ ct2 = R(r, t) = d = a.
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Observe the minimum nonzero value of a reduced form R(x, y) is obtained precisely when (x, y) =
(±1, 0), so we must have r = ±1, t = 0.† (Hence the minimum positive value of a reduced form is
the x2-coefficient, in this case a.) Further ru−st = ru = 1 implies u = r−1. Then the xy-coefficient
of S(x, y) is

2ars+ bru = 2ars+ b = b± 2as = e.

Since S is reduced, we have |e| ≤ d = a, but the only was this can happen is if s = 0 (which means
R = S) or if b = a and s = ±1, which means e = −d, which we have excluded from our definition
of reduced. This shows uniqueness when y0 = 0.

Next suppose x0 = 0. Similar to the above, we see d = c and looking at the x2-coefficient of
S(x, y) one can conclude r = 0, s = t = ±1 as the second smallest minimum nonzero value of a
reduced form R(x, y) is c and is obtained precisely when (x, y) = (0,±1)§—see Remark below. This
means the xy-coefficient of S(x, y) must be b + 2cu. Then |e| = |b + 2cu| ≤ a ≤ c means either
u = 0 (so R = S) or b = a = c and u = −1 in which case S(x, y) = ax2 − axy + ay2, which is not
reduced.

Finally suppose |x0y0| = 1. The above inequalities for d say a ≥ d ≥ a|x0y0| so a = d. The rest
follows like the y0 = 0 case.

Remark. It should be fairly obvious that for a reduced form R(x, y) = ax2+bxy+cy2 the minimum
nonzero value is obtained is a, which happen precisely when (x, y) = (±1, 0) (assuming a < c). It
may be less clear that the second smallest nonzero value obtained is c, but both of these assertions
follow from the simple exercise that R(x, y) ≥ (a− |b|+ c) min(x2, y2). If you want, you can work
this out on your own, but I’m not assigning it as homework.

The above theorem tells us that if we want to study positive definite forms, it suffices to consider
reduced forms.

4.2 The mass formula

One of the most important early discoveries about quadratic forms is that they are better studied
collectively than individually. Precisely, we make the following

Definition 4.2.1. Let ∆ be a discriminant. The form class group Cl(∆) of discriminant ∆ is
the set of proper equivalence classes of forms of discriminant ∆, i.e., Cl(∆) = F∆/ ∼.

We will later see how to define a group structure on this, justifying the name. From the last
section, we know we can take a set of representatives for Cl(∆) to be the set of reduced forms of
discriminant ∆.

Proposition 4.2.2. For any discriminant ∆, the number h(∆) := |Cl(∆)| <∞.

Proof. Note h(∆) is the number of reduced forms of discriminant ∆. If ax2 + bxy + cy2 is reduced
of discriminant ∆, then |b| ≤ a ≤ c so 4b2 ≤ 4ac = b2 + ∆, i.e., 3b2 ≤ |∆|. In other words, there are
only finitely many choices for b. Each choice for b determines ac, and the product ac determines a
finite number of choices for a and c.
†If a = c, the minimum nonzero value of the form is also obtained at (0,±1), which corresponds to r = 0, t = ±1.

Though we technically omit this case here, we can actually absorb this situation into our argument for the subsequent
x0 = 0 case.

§Again, technically if a = c, this actually gives the minimum nonzero value of the form, but this does not affect
our argument.
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Using the notion of the class group, we can get a formula for the number of representations of
n by a quadratic form of discriminant ∆. It will be convenient to consider proper representations.

Definition 4.2.3. We say Q(x, y) ∈ F∆ properly represents n if n = Q(x, y) for some x, y ∈ Z
with gcd(x, y) = 1. In this case, the solution (x, y) is called a proper representation of n by Q.

Example 4.2.4. Let Q(x, y) = x2 + y2. Then Q represents 4 = 22 + 02 = Q(2, 0), but it does not
properly represent 4 since gcd(2, 0) = 2 and (±2, 0) and (0,±2) are the only solutions to Q(x, y) = 4.

On the other hand even though 25 has an improper representation by Q, namely 25 = 52 + 02 =
Q(5, 0) and gcd(5, 0) = 5, 25 also has a proper representation by Q: 25 = 32 + 42 = Q(3, 4) and
gcd(3, 4) = 1. Hence we say Q(x, y) properly represents 25.

Lemma 4.2.5. Q(x, y) represents n if and only if Q(x, y) properly represents m for some m|n such
that n

m is a square.

Proof. (⇒) Suppose Q(x, y) represents n. If Q properly represents n, we can just take m = n and
we are done. If not, then Q(x, y) = n for some x, y with gcd(x, y) = d > 1. Then Q(x/d, y/d) =
Q(x, y)/d2 is a proper representation of m = n/d2.

(⇐). Suppose Q(x, y) properly represents m where n = d2m. Then Q(dx, dy) = d2Q(x, y) =
d2m = n.

In other words, understanding what numbers are properly represented by Q tells us which num-
bers are represented by Q, since the latter numbers are just squares times the former numbers. Let
rQ(n) (resp. RQ(n)) denote the number of proper representations (resp. number of representations)
of Q by n.

Theorem 4.2.6. (Dirichlet’s mass formula, first version) Let d > 1 be squarefree and set
∆ = −4d. Let Q1, Q2, . . . , Qh be a set of representatives for the form class group Cl(∆). Then

rQ1(n) + rQ2(n) + · · ·+ rQh
(n) = 2

∏
p|n

(
1 +

(
∆

p

))
where p runs over prime divisors of n > 0 and gcd(n,∆) = 1.

(This statement is from [Cox], but seems to be only be correct when d ≡ 1 mod 4.)
There are many different versions of the statement of this result, but the above one is the

most applicable to the forms x2 + dy2 (with d squarefree). The proof of the mass formula is quite
elementary, and we will omit it now, but John Paul will present a proof of the following version
later this semester.

Theorem 4.2.7. (Dirichlet’s mass formula, second version) Let ∆ be the discriminant of an
imaginary quadratic field, Q1, Q2, . . . , Qh a set of representatives for Cl(∆) and n > 0 such that
gcd(n,∆) = 1. Then

RQ1(n) +RQ2(n) + · · ·+RQh
(n) = w

∑
k|n

(
∆

k

)
,

where w is the number of units in the ring of integers of Q(
√

∆).

(Recall
(

∆
1

)
= 1 for any ∆.)

The first version of the mass formula immediately gives
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Corollary 4.2.8. Suppose ∆ = −4d with d > 1 squarefree. Then n > 0 relatively prime to ∆ is
properly represented by some form of discriminant ∆ if and only if

(
∆
p

)
= 1 for all primes p|n.

The point is that while it is difficult to study the numbers represented by an individual quadratic
form in general, it is relatively easy to understand which numbers are represented by some quadratic
form of discriminant ∆, for fixed ∆. However, if the class number h(∆) = 1, then the above formulas
are in fact formulas for a specific rQ(n) (resp. RQ(n)).

Example 4.2.9. Consider Q(x, y) = x2 +y2. This has discriminant ∆ = −4, which is the discrimi-
nant of the quadratic field Q(i). If ax2+bxy+cy2 is a reduced form of discriminant −4, then 3b2 ≤ 4
(see proof of Proposition 4.2.2), so b = 0 or b = ±1. Clearly b = ±1 makes b2−4ac = 1−4ac = −4
unsolvable, so b = 0. Then we must have ac = 1 so a = c = 1 (since we are just working with posi-
tive definite forms). In particular the class number h(−4) = 1, and {Q} is a set of representatives
for Cl(∆).

Then the second version of Dirichlet’s mass formula reads

RQ(n) = 4
∑
k|n

(
∆

k

)
,

for n odd. If n = p is prime, then for p ≡ 1 mod 4 we have

RQ(p) = 4

{(
∆

1

)
+

(
∆

p

)}
= 4(1 + 1) = 8

and if p ≡ 3 mod 4 we have

RQ(p) = 4

{(
∆

1

)
+

(
∆

p

)}
= 4(1− 1) = 0.

In other words, x2 + y2 represents an odd prime p if and only if p ≡ 1 mod 4. So Dirichlet’s mass
formula gives Fermat’s two square theorem as a special case.

Moreover, it tells us two more things about x2 + y2. If p = x2
0 + y2

0 is odd, then x0 6= y0 so
(±x0,±y0) and (±y0,±x0) are also solutions to Q(x, y) = p. This accounts for 8 solutions. Since
RQ(p) = 8, this means up to sign and interchanging x and y, p = x2

0 + y2
0 is the only way to write

p as a sum of 2 squares.
Recall Brahmagupta’s composition tells us the product of two numbers of the form x2 + y2 is

again of the form x2 + y2. Since 2 = 12 + 12 and p2 = p2 + 02 for any p, we know that n is of the
form x2 + y2 if any p|n with p ≡ 3 mod 4 occurs to an even power in the prime factorization of n.

In fact, these are the only n represented by x2 + y2, and we can actually prove this for n odd
using the mass formula. Indeed, suppose n is odd and not of the above form, i.e., there is a prime
p ≡ 3 mod 4 dividing n which occurs to an odd power in the prime factorization of n. Let D1 be
the set of divisors k of n such that p occurs to an even power in the prime factorization of k, and
let D2 = {pk : k ∈ D1}. Then D1 ∪D2 are the divisors of n and D1 and D2 are disjoint. So

RQ(n) = 4

∑
k∈D1

(
∆

k

)
+
∑
pk∈D2

(
∆

pk

) = 4
∑
k∈D1

{(
∆

k

)
+

(
∆

p

)(
∆

k

)}
= 0

since
(

∆
p

)
= −1.
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Exercise 4.4. Determine the reduced forms of discriminant ∆ for ∆ = −3,−8,−12,−20,−24. In
particular, determine h(∆) for these ∆.

Exercise 4.5. Use Dirichlet’s mass formula and Brahmagupta’s composition law to determine to
which odd numbers are of the form x2 + 2y2.

Exercise 4.6. Use Dirichlet’s mass formula, Brahmagupta’s composition law and (i) to determine
to which numbers prime to 6 are of the form x2 + 3y2.

4.3 The form class group

The idea behind Gauss’s composition of binary quadratic forms comes from Brahmagupta compo-
sition, which says the product of two numbers of the form x2 + dy2 is again of the form x2 + dy2.
Precisely, Brahmagupta’s composition law is

(x2
1 + dy2

1)(x2
2 + dy2

2) = (x1x2 − dy1y2)2 + d(x1y2 + x2y1)2 = X2 + dY 2

where X = x1x2−dy1y2, Y = x1y2+x2y1. Gauss’s composition says that if Q1 and Q2 are quadratic
forms of discriminant ∆, then there is a form Q3 of the same discriminant such that

Q1(x1, y1)Q2(x2, y2) = Q3(X,Y )

where X,Y are some (homogeneous) quadratic expressions in x1, y1, x2 and y2. In other words, the
product of a number of represented by Q1 with a number represented by Q2 is represented by Q3.
We will write this composition as

Q1 ◦Q2 = Q3

and this will make Cl(∆) into a finite abelian group.
However, the explicit determination of X, Y and the coefficients of Q3 in Gauss’s composition

is rather complicated and we will not describe it explicitly. Instead, we will approach Gauss com-
position via ideals. But to get a feeling of how this composition can be done without ideal, we will
briefly explain Dirichlet’s approach to Gauss composition.

Two forms Q1(x, y) = a1x
2 + b1xy + c2y

2 and Q2(x, y) = a2x
2 + b2xy + c2y

2 of discriminant
∆ are called united if gcd(a1, a2,

b1+b2
2 ) = 1. If they are united, there exist B,C ∈ Z such that

a1x
2 + b1xy + c2y

2 ∼ a1x
2 + Bxy + a2Cy

2 and a2x
2 + b2xy + c2y

2 ∼ a2x
2 + Bxy + a1Cy

2. Then
the Dirichlet composition is defined to be

Q1 ◦Q2 = a1a2x
2 +Bxy + Cy2.

To see that this follows our notion of what composition should be, observe

(a1x
2 +Bxy + a2Cy

2)(a2x
2 +Bxy + a1Cy

2) = a1a2X
2 +BXY + CY 2

where X = x1x2 − Cy1y2 and Y = a1x1y2 + a2x2y1 + By1y2. One can check that the latter form
has discriminant ∆. Note that Dirichlet composition does not define composition of any two forms
of discriminant ∆ (only united forms), but it is enough to define a composition (or multiplication)
law on the proper equivalences classes Cl(∆).

Now we will present the approach to Gauss’s composition via ideals. For simplicity we will
work with forms whose discriminant ∆ is the discriminant of a quadratic field. We say ∆ is a
fundamental discriminant if ∆ = ∆K for some quadratic field K.
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Exercise 4.7. Let ∆ be the discriminant of Q(x, y) = ax2 + bxy+ cy2. Show if ∆ is a fundamental
discriminant, then Q is primitive, i.e., gcd(a, b, c) = 1.

We remark that in working with quadratic forms, one often restricts to primitive forms, since
any form is just a multiple of a primitive form.

From now on, for the rest of this section we assume ∆ < 0 is a fundamental discriminant.
Let K = Q(

√
∆) be the imaginary quadratic field of discriminant ∆.

Definition 4.3.1. Let I be an ideal of OK with ordered Z-basis {α, β}. Then the quadratic form
associated to I is

QI(x, y) = N(αx− βy)/N(I) = ax2 + bxy + cy2.

Here the first norm is the norm of the element αx + βy ∈ OK , and the second is of course the
ideal norm. Explicitly we have

N(αx+ βy) = N(α)x2 − Tr(αβ)xy +N(β)y2

so a = N(α)/N(I), b = −Tr(αβ)/N(I) and c = N(β)/N(I) in the definition above. Technically,
the form QI depends upon the choice of an ordered Z-basis for I, but it is not too difficult to see
that a different basis will lead to a properly equivalent form. Further QI has discriminant ∆.

Example 4.3.2. Let ∆ = −4 so K = Q(i). Consider the ideals I = 〈1, i〉 = Z[i] and J =
〈1 + i, 1− i〉 = (1 + i) of OK . Then

QI(x, y) = N(x− iy)/N(I) = N(x+ iy) = x2 + y2

and
QJ (x, y) = N((1 + i)x− (1− i)y)/N(J ) = (2x2 − Tr(2i) + 2y2)/2 = x2 + y2.

So we see different (but equivalent) ideals may lead to the same form.

Exercise 4.8. Let ∆ = −20 so K = Q(
√
−5) and consider the ideals I = 〈2, 1 +

√
−5〉 and

J = 〈3, 1 +
√
−5〉. Compute QI and QJ . Check they have discriminant ∆. Are they properly

equivalent?

Definition 4.3.3. Let Q(x, y) = ax2 + bxy + cy2 be a form of discriminant ∆. The ideal of OK
associated to Q is

IQ = (a,
b−
√

∆

2
).

Lemma 4.3.4. For any form Q, QIQ = Q. In other words, if we take the ideal IQ = (a, b−
√

∆
2 )

associated to Q(x, y) = ax2 + bxy + cy2, then the form N(ax + b−
√

∆
2 y)/N(IQ) associated to IQ

equals Q.

This lemma says the association I 7→ QI is a right inverse to Q 7→ IQ. The proof is elementary.
However the converse is not true in general. What we can say is the following

Lemma 4.3.5. Let I be an ideal of OK and let QI be the associated form. If J = IQI is the ideal
associated to QI , then J ∼ I.
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Then we can define multiplication of forms QI and QJ associated to ideals by QI ◦QJ = QIJ .
Upon showing the map ClK → Cl(∆) induced by I 7→ QI is surjective, this defines a multiplication
on the form class group Cl(∆). Precisely, one gets

Theorem 4.3.6. We have an isomorphism

ClK ' Cl(∆)

I � QI

IQ� Q.

Proofs may be found in [Cohn] and [Cox]. The proof are not difficult, but we omit them in the
interest of time.

Exercise 4.9. Show x2 + −∆
4 y2 is the identity of Cl(∆) if ∆ ≡ 0 mod 4 and x2 − xy + 1−∆

4 y2 is
the identity of Cl(∆) if ∆ ≡ 1 mod 4.

Exercise 4.10. Show Q2(x, y) = ax2 − bxy+ cy2 is the inverse of Q1(x, y) = ax2 + bxy+ cy2. We
know Q1 and Q2 are always equivalent by a transformation of determinant −1, namely (x, y) 7→
(x,−y). Deduce that Q1 ∼ Q2 if and only if Q1 has order 2 in Cl(∆Q1).

Exercise 4.11. We say Q(x, y) = ax2 + bxy + cy2 is ambiguous if a|b. Show if Q is ambiguous,
then Q has order 1 or 2 in Cl(∆Q).

In fact it can be shown that Q has order ≤ 2 in the form class group if and only if Q ∼ Q′ for
some ambiguous form Q′. In this case, the reduced form in the proper equivalence class of Q is
either ambiguous (so b = a or b = 0) or of the form ax2 + bxy + ay2.

Exercise 4.12. Determine all reduced forms of discriminant ∆ = −84. Use this to deduce Q(
√
−21)

has class group isomorphic to V4 = C2 × C2.

4.4 Genus theory

As in the previous section, let K be an imaginary quadratic field of discriminant ∆. Dirichlet’s
mass formula tells us which numbers are represented by some form in F∆, but it doesn’t tell us
which numbers are represented by a specific form of discriminant ∆. The problem of distinguishing
between forms (or rather equivalence classes of forms) of discriminant ∆ is not at all a simple
problem in general, however there is a simple approach which gives a complete solution when the
class group is isomorphic to Cr2 .

To motivate genus theory, let’s consider our favorite example.

Example 4.4.1. Let ∆ = −20 so K = Q(
√
−5). The reduced forms of discriminant ∆ are

Q1(x, y) = x2 + 5y2 and Q2(x, y) = 2x2 + 2xy + 3y2. Hence ClK ' Cl(∆) has order 2, so must be
isomorphic to C2. From the exercises in the previous section, Q1 is the identity and Q2 has order
2 in Cl(∆).

First let us determine the primes represented by Q1 and Q2. By the mass formula (first version)
we know

RQ1(p) +RQ2(p) = rQ1(p) + rQ2(p) = 2(1 +

(
∆

p

)
) =

{
4 p ≡ 1, 3, 7, 9 mod 20

0 p ≡ 11, 13, 17, 19 mod 20
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for p - ∆. (Note for p prime, RQ(p) = rQ(p) for any form Q.) Note that if RQ1(p) > 0 for p - 20,
then RQ1(p) ≥ 4 because if (x, y) is a solution to x2 + 5y2 = p, then so are (±x,±y), which gives 4
different solutions as long as p 6= 5. In other words, any p ≡ 1, 3, 7, 9 mod 20 is represented either
by Q1 or Q2, but not both.

However, looking at what numbers relatively prime to 20 are of the form x2 + 5y2 mod 20 we
see 3 and 7 are not possible. Similarly, simple computations show that 1 and 9 are not of the form
2x2 + 2xy + 3y2 mod 20. (In fact, it suffices to observe x2 + 5y2 does not represent 3 mod 4 and
2x2 + 2xy + 3y2 does not represent 1 mod 4.) Hence we have

p is represented by

{
Q1 ⇐⇒ p = 5 or p ≡ 1, 9 mod 20

Q2 ⇐⇒ p = 2 or p ≡ 3, 7 mod 20

Now we can ask what integers n > 0 are represented by Q1. By the mass formula (first form),
we know if Q1 represents n, then n cannot be divisible by any prime p such that

(
∆
p

)
= −1, i.e.,

any p ≡ 11, 13, 17, 19 mod 20. Write n =
∏
peii ·

∏
q
fj
j where each pi is represented by Q1 and each

qj is represented by Q2. Gauss’s composition says n is represented by
∏
iQ

ei
1 ·
∏
j Q

fj
2 (where the

multiplication here denotes Gauss composition). In other words, n is represented by Q1 if
∑
fj is

even and n is represented by Q2 if
∑
fj is odd.

We would like to say the above statement about which n’s are represented by Q1 and which
are represented by Q2 is if and only if. Note that Q1 represents 0, 1, 2 mod 4 and 0, 1, 4 mod 5,
where as Q2 represents 0, 2, 3 mod 4 and 0, 2, 3 mod 5. The only overlap here are the numbers
≡ 0, 2 mod 4 and ≡ 0 mod 5. Hence Q1 and Q2 cannot represent the same numbers, except possibly
for numbers divisible by 10. The case where n is not prime to the discriminant is more subtle, and
we will not prove this, but it turns out Q1 and Q2 never represent the same numbers, so the above
characterization of numbers represented by Q1 (or Q2) is if and only if.

Genus theory allow us to generalize the above example to separate (at least partially) represen-
tations by different forms of discriminant ∆.

Definition 4.4.2. Let Q1, Q2 ∈ F∆. We say Q1 and Q2 are in the same genus if they represent
the same values mod ∆. The principal genus is the genus containing the identity of the form class
group.

It is a theorem that Q1 and Q2 are in the same genus if and only if Q1 and Q2 represent the
same values mod m for every m. What is more important for us however, is that forms in different
genera (the plural of genus) represent disjoint sets of numbers in (Z/∆Z)×. This is the content of
the following proposition.

Proposition 4.4.3. Regard χ∆ =
(

∆
·
)
as a real character of (Z/∆Z)×. Let H = kerχ∆. Let Q0

(resp. Q) be in the prinicipal genus (resp. any genus) of F∆ and H0 (resp. HQ) denote the set of
values in (Z/∆Z)× represented by Q0 (resp Q). Then H0 is a subgroup of H and HQ is a coset of
H0 in H.

(Note that H being the kernel of a group homomorphism, is a subgroup of (Z/∆Z)×.)
For instance, in the above example, with Q0 = x2 + 5y2 and Q = 2x2 + 2xy + 3y2, we have

H = {1, 3, 7, 9} ⊆ (Z/20Z)×, H0 = {1, 9} and HQ = {3, 7} = 3 {1, 9}.
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Proof. Let n ∈ (Z/∆Z)×. If n is represented by a form of discriminant ∆, we have n ∈ H = kerχ∆

by Dirichlet’s mass formula. To see that H0 is a subgroup of H, observe it must be closed under
multiplication by Gauss composition. To show it is closed under inversion, note by Exercise 4.9, we
can assume Q0 = x2− ∆

4 y
2 or x2 +xy+ 1−∆

4 y2. Using either Brahmagupta or Dirichlet composition,
it is straightforward to explicitly check H0 is closed under inverses (and is nonempty—it contains
1).

It follows from Gauss composition that HQ must be a translate of H0 in H.

Since the cosets of H0 in H are disjoint, the integers n relatively prime to ∆ can only be
represented by forms in a single genus of F∆. In particular, if we want to determine which numbers
are of the form x2 + dy2 (say relatively prime to ∆ = −4d), we can at least say n are represented
by some form in the principal genus. In particular, if, up to equivalence, x2 + dy2 is the only form
in the principal genus, we can say exactly which primes are represented by x2 + dy2 by (i) the
mass formula and (ii) considerations mod ∆. In this case, we say ∆ has one class per genus (see
exercise below).

Exercise 4.13. Let Q1, . . . , Qh denote representatives for Cl(∆). Using Gauss composition, show
the number of Qi in a given genus is the same for each genus.

Exercise 4.14. Pick representatives Q1, Q2 for Cl(−24). Determine what values Q1 and Q2 rep-
resent mod 24. Using this with Dirichlet’s mass formula, determine all primes represented by Q1

and all primes represented by Q2. In particular, you should get a determination of all primes of the
form x2 + 6y2.

Now of course it’s natural to ask, for which discriminants ∆ do we have one class per genus?
It’s clearly true if the class number h(∆) = 1. We know there are only 9 fundamental discriminants
∆ < 0 with class number 1 (Gauss’s class number problem), and this was easy to determine.
Conversely, it is still an unsettled problem (also posed by Gauss) for which ∆ have one class per
genus. It is conjectured that there are precisely 65 fundamental discriminants (and 101 arbitrary
negative discriminants) ∆ < 0 with one class per genus. It is not too difficult to show the following.

Theorem 4.4.4. The principal genus of Cl(∆) consists of the subgroup of squares of Cl(∆).

Corollary 4.4.5. ∆ has one class per genus if and only if Cl(∆) ' Cr2 for some r ≥ 0.

We remark that for a specific r, we can compute all imaginary quadratic fields with class group
Cr2 . There shouldn’t be any for large enough r, and this is the most difficult part.

In the case of one class per genus, one can always determine the primes of the form x2 + dy2

by simple congruence conditions. However, at least conjecturally, this only happens finitely many
times (for negative ∆). In the rest of the cases, the determination of primes of the form x2 + dy2 is
more complicated.

Example 4.4.6. Consider Q0 = x2 +14y2. This has discriminant ∆ = −56 and corresponds to the
field K = Q(

√
−14). There are 3 other reduced forms of discriminant −56, given by Q1 = 2x2 +7y2,

Q2 = 3x2 + 2xy + 5y2 and Q3 = 3x2 − 2xy + 5y2. It is easy to check the (form) class group
Cl(∆) ' C4 (see exercise below). One can show p = x2 + 14y2 if and only if (i)

(−14
p

)
= 1, and (ii)

(x2 + 1)2 ≡ 8 mod p has a solution. See [Cox]. We will discuss this briefly in the next chapter.

Exercise 4.15. Check that Q2 ◦Q2 ∼ Q3 ◦Q3 ∼ Q1. Conclude Cl(−56) ' C4.
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5 Non-unique factorizations

In this chapter we briefly discuss some aspects of non-unique factorization, ending with an applica-
tion of quadratic forms (and more generally ideals) to factorization problems in rings of integers.

5.1 Principalization

Let K be a number field. Kummer approach to resolving the non-unique factorization of OK was
essentially to work in a larger ring of integers R where every (nonzero nonunit) element of OK
factors uniquely (up to order and units) into irreducibles in R. We can recast this approach in
Dedekind’s language of ideals with the following notion.

Definition 5.1.1. We say an finite extension L of K is a principalization field for K, or prin-
cipalizes K, if IOL is a a principal ideal of L for any ideal I of OK .

Some authors instead say K capitulates in L.

Proposition 5.1.2. Suppose L principalizes K. Leta be a nonzero nonunit in OK and write aOK =∏
pi be the prime ideal factorization of aOK in OK . Write piOL = (αi) for some αi ∈ OL. If

a =
∏
βj is any irreducible factorization of a in OK , then each βj is, up to a unit of OL, a

subproduct of the αi’s.

In other words all irreducible factorizations of a in OK , comes from different groupings of a
single (not necessarily irreducible) factorization a =

∏
αj in OL. E.g., we may have something like

a = (α1 · · ·αi1)︸ ︷︷ ︸
β1

(αi1+1 · · ·αi2)︸ ︷︷ ︸
β2

· · · (αik+1 · · ·αm)︸ ︷︷ ︸
βk+1

and any irreducible (or even non-irreducible) factorization of a in OK , just comes from a regrouping
of the αi’s.

Proof. Since L principalizes K, then for each i, we can write piOL = (αi) for some αi ∈ OL. (It is
not necessarily true that each αi is irreducible.) Hence

aOL =
∏

(piOL) =
∏

(αi).

On the other hand,
aOK =

∏
(βj)

so each (βj) is a subproduct of the pi’s, say βj = pj1pj2 · · · pjk so βj = uαj1 . . . αjk for some unit
u ∈ OL.

Example 5.1.3. Let K = Q(
√
−5) and L = Q(

√
−5,
√

2). To show L principalizes K, it suffices
to show (2,

√
−5)OL is principal since (2,

√
−5) ⊆ OK generates the class group of K. (Justify

to yourself that this is sufficient.) Note that (2,
√
−5)2 = (2). On the other hand (2) = (

√
2)2

in OL. Since (
√

2) is prime in OL, we must have (
√

2) = (2,
√
−5)OL by the unique prime ideal

factorization in OL. Thus L is a principalization field for K.
Let’s see how we can resolve the non-unique factorization

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)
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in OK using principalization. Recall the prime ideal factorization of (6) in OK is

(6) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

One can check that
(2, 1 +

√
−5)OL = (

√
2)

(we did this above) and

(3, 1 +
√
−5)OL = (

√
2 +
√
−10

2
)

(3, 1−
√
−5)OL = (

√
2−
√
−10

2
)

(we’ll discuss this below). The above proposition says the irreducible factorizations of 6 in OK come
from different groupings of the factorization

6 = (
√

2 ·
√

2)︸ ︷︷ ︸
2

(

√
2 +
√
−10

2
·
√

2−
√
−10

2
)︸ ︷︷ ︸

3

= (
√

2 ·
√

2 +
√
−10

2
)︸ ︷︷ ︸

1+
√
−5

(
√

2 ·
√

2−
√
−10

2
)︸ ︷︷ ︸

1−
√
−5

.

Thus we see principalization provides an alternative viewpoint to the resolution of non-unique
factorization in a ring of integers OK . Furthermore, we will see there are some advantages to using
principalization (essentially Kummer’s approach) instead of ideal theory (Dedekind’s approach) by
giving an application of principalization in the next section, even though these two approaches are
more or less equivalent by Proposition 5.1.2.

Now of course it is natural to ask when K has a principalization field and how can we find one.
It turns out to be quite easy to answer.

Proposition 5.1.4. Let I1, . . . , Ih be ideals of OK which generate the class group. If ej is the order
of Ij in ClK , then we can write Iejj = (αj) for some αj ∈ OK . Then L = K( e1

√
α1, . . . , eh

√
αh) is a

principalization field for K.

The proof is immediate.
It is worthwhile to remark that even though passing to OL resolves non-unique factorization in

OK (in the sense of Proposition 5.1.2), it is not necessarily the case that any element of OL has a
unique irreducible factorization in OL. In particular, there are examples of number fields K such
that no finite extension L of K has class number 1. This was shown by Golod and Shafarevich in
1964 with the example of K = Q(

√
−3 · 5 · 7 · 11 · 13 · 17 · 19).

One particular principalization field is particularly noteworthy, and is important for studying
primes of the form x2 + dy2.

We say L/K is an abelian extension if it is Galois and Gal(L/K) is abelian. Further, L/K is
unramified if every prime ideal p of OK is unramified in L.

Definition 5.1.5. The Hilbert class field HCF (K) is the maximal unramified abelian extension
of K.

An important component of class field theory, which we hope to discuss in Part III, is the
following result.
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Theorem 5.1.6. H = HCF (K) is a well-defined finite extension of K satisfying Gal(H/K) = ClK .
Further H principalizes K.

Example 5.1.7. Let K = Q. Then any nontrivial extension L of K must be ramified (since the
|∆L| > 1 and any p|∆L ramifies in L), hence there is only one unramifed extension of Q—namely
Q itself. Thus HCF (Q) = Q.

More generally if hK = 1, the above theorem tells us HCF (K) = K.

Example 5.1.8. Let K = Q(
√
−5). If L/K is unramified, then p|∆L implies p|∆K = −20. One

might be tempted to guess the Hilbert class field of K is L = Q(
√
−5,
√

2) from Example 5.1.3.
Indeed L/K is abelian with Galois group ' C2 ' ClK , but it is not unramified. The Hilbert class
field of K is Q(

√
−5, i).

Exercise 5.1. Check HCF (Q(
√
−5)) = Q(

√
−5, i) using the definition and the theorem above.

One use of the Hilbert class field can be seen in the following result ([Cox]).

Theorem 5.1.9. Let d > 0 be squarefree and d 6≡ 3 mod 4. Let K = Q(
√
−d), H = HCF (K), and

p be an odd prime not dividing ∆ = −4d. Write H = K(α) and let f(x) be the minimum polynomial
for α. Then the following are equivalent:

(i) p is represented by x2 + dy2

(ii) p splits completely in H
(iii)

(
∆
p

)
= 1 and f(x) has a root mod p.

Exercise 5.2. Check the above theorem in the case of d = 5.

5.2 Counting non-unique factorizations

In this section, we will show how one can use quadratic forms to determine and count the irreducible
factorizations of an integer in OK , where K is a quadratic field with class number 2. (In fact, one
can treat the case of ClK ' Cr2 by the same approach.) For simplicity, we will just go through the
specific case of K = Q(

√
−5).

Afterwards, we will discuss what happens in an arbitrary number field, where one must use ideal
theory to obtain the analogous result. In particular, this gives a qualitative and quantitative way
to see that the class group ClK really does measure the failure of unique factorization in OK in a
precise way. Both these results and this approach using principalization seems to be new (in fact I
proved it just to show you how the class group measures the failure of unique factorization in OK !),
see [Martin] for more details. For an introduction to other work on irreducible factorizations (in
different directions), see [Narkiewicz].

Let K = Q(
√
−5) so ∆ = ∆K = −20. Denote by C1 the set of principal ideals in OK and C2

the set of nonprinicpal ideals of OK . The reduced forms of discriminant ∆ are Q1(x, y) = x2 + 5y2

and Q2(x, y) = 2x2 + 2xy + 3y2.
Let P0 denote the primes p ∈ N which are not represented by Q1 or Q2 and Pi denote the primes

p ∈ N which are represented by Qi for i = 1, 2. Then P0 is the set of inert primes in K/Q, P1 is
the set of primes p such that the ideal pOK factors into two principal ideals in OK , and P2 is the
set of primes p such that pOK factors into two nonprincipal ideals of OK .
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Set

Prami = {p ∈ Pi : p is ramified in K} , and
Punri = {p ∈ Pi : p is unramified in K} .

Explicitly, we have P0 = {p : p ≡ 11, 13, 17, 19 mod 20}, Pram1 = {5}, Punr1 = {p : p ≡ 1, 9 mod 20},
Pram2 = {2} and Punr2 = {p : p ≡ 3, 7 mod 20}.

If p ∈ P0 ∪ P1 then any prime ideal p of OK lying above p is in C1, and if q ∈ P2, then any
prime ideal of OK lying above q is in C2. Specifically, if q = 2 ∈ Pram2 , then qOK = r2 where r is
the prime ideal (2, 1 +

√
−5) of OK , and if q ∈ Punr2 then q = qq where q and q are distinct prime

ideals of OK . Here q denotes the conjugate ideal of q in K/Q.
Now let n > 1 and write the prime ideal factorization of nOK as

(n) = pd1
1 · · · p

dr
r qe11 qe11 · · · q

es
s qess rf ,

where each pi ∈ C1, qj ∈ C2 with conjugate qj , and the pi’s, qj ’s, qj ’s and r are all distinct. Since
each pi = (πi) for some irreducible πi of OK , any irreducible factorization of n must contain (up to
units) πd1

1 · · ·πdrr . Thus it suffices to consider irreducible factorizations of n′ = n/(πd1
1 · · ·πdrr ).

Let qj be the prime in N such that qj lies above qj . Since qj is nonprincipal, we must have that
qj ∈ P2, i.e., qj is represented by Q2. Note that we can factor the quadratic form into linear factors

Q2(x, y) = (
√

2x+

√
2 +
√
−10

2
y)(
√

2x+

√
2−
√
−10

2
y) (5.1)

over the field L = K(
√

2). Hence, while qj is irreducible over OK (otherwise the prime ideal factors
of qjOK would be principal), the fact that qj = Q2(x, y) for some x, y gives us a factorization
qj = αjαj in L where αj =

√
2x+

√
2+
√
−10

2 y and αj =
√

2x+
√

2−
√
−10

2 y. Since
√

2,
√

2±
√
−10

2 ∈ OL,
we have αj ∈ OL (in fact irreducible).

Since αj and αj are conjugate with respect to the nontrivial element of Gal(K/Q), the ideals
(αj) ∩ OK and (αj) ∩ OK must be conjugate ideals of OK which divide qj , and hence in some
order equal qj and qj . Thus, up to a possible switching αj and αj , we can write qjOL = (αj) and
qjOL = (αj). Similarly rOL = (

√
2).

This means the following. If n′ =
∏
βi is any irreducible factorization of n′ in OK , we have

∏
(βi) = (n′) = rfqe11 qe11 · · · q

es
s qess = (

√
2)f

s∏
j=1

(αj)
ej (αj)

ej

as ideals of OL. From Proposition 5.1.2, we know that each (βi) is a subproduct of the product
of ideals on the right. In other words, to the irreducible factorizations of OK come from different
groupings of the factorization

n′ =
√

2
f

s∏
j=1

α
ej
j α

ej
j . (5.2)

Thus to determine the factorizations of of n′ in OK , it suffices to determine when a product of
the αij is an irreducible element of OK . But this is simple! Note from the factorization of Q2(x, y)
in (5.1), we see that each αij ∈

√
2K. Hence the product of any two αi’s (or

√
2 · αj or

√
2 ·
√

2)
lies in K, and therefore OK , and must be irreducible since no individual αj ∈ OK . In other words,
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the irreducible factorizations of n′ in OK are precisely what we get from grouping the terms on the
right of (5.2) in pairs. What we have proved is the following.

If {ai} is a collection of distinct objects, denote the multiset containing each ai with cardinality
mi by

{
a

(mi)
i

}
. Let ηK(n) denote the number of distinct (up to order and units) irreducible

factorizations of n in OK .

Proposition 5.2.1. With notation as above (K = Q(
√
−5)), the irreducible factorizations of n in

OK are, up to units, n =
∏
πi
∏
βk where each βk is a product of two numbers of the following

types:
√

2, αj , or αj. In particular, ηK(n) is the number of ways we can arrange the multiset{√
2

(f)
, α

(ej)
j , α

(ej)
j

}
in pairs.

The length of an irreducible factorization is the number of irreducibles occurring in the factor-
iziation, with multiplicity.

Corollary 5.2.2. Any two irreducible factorizations of n in OK have the same length.

Hence the above result tells us about the structure of the irreducible factorizations in OK , not
just their number. In fact, the above approach tells us how to explicitly obtain all irreducible
factorizations of some n in OK .

Example 5.2.3. Let n = 2 · 72 · 29. Here 29 ∈ P1 and 2, 7 ∈ P2. We have

2 = Q2(1, 0) =
√

2 ·
√

2

7 = Q2(1, 1) = (
√

2 +

√
2 +
√
−10

2
)︸ ︷︷ ︸

α

(
√

2 +

√
2−
√
−10

2
)︸ ︷︷ ︸

α

29 = Q1(3, 2) = 32 + 5 · 22 = (3 + 2
√
−5)︸ ︷︷ ︸

π

(3− 2
√
−5)︸ ︷︷ ︸

π

using the factorization of Q1 and Q2 into linear forms over OL. Then the above tells us the ir-
reducible factorizations of n in OK are precisely those obtained from grouping the terms in square
brackets on the right in pairs in the following factorization in OL:

n = ππ
[√

2 ·
√

2 · α · α · α · α
]
.

Precisely, we have ηK(n) = 5 factorizations and they are explicitly given by

n = ππ(
√

2
√

2)(αα)(αα)

n = ππ(
√

2
√

2)(αα)(αα)

n = ππ(
√

2α)(
√

2α)(αα)

n = ππ(
√

2α)(
√

2α)(αα)

n = ππ(
√

2α)(
√

2α)(αα).

(Each product of two terms in OL in parentheses above is an irreducible element of OK . If you feel
a need, you can compute these products explicitly, and check that they are all distinct factorizations
in OK .)

80



Exercise 5.3. Determine all irreducible factorizations of n = 60 in OK = Z[
√
−5].

Exercise 5.4. Let p ∈ N be prime and e ≥ 1. Determine a formula for ηK(pe) where K = Q(
√
−5).

(It will depend on the value of p mod 20 as well as e.)

Exercise 5.5. Let q1, . . . , qk be distinct primes in Punr2 . Show ηK(q1 · · · qk) = (2k − 1)!! = (2k −
1)(2k − 3)(2k − 5) · · · 3 · 1. (Again K = Q(

√
−5).)

We remark that there seems to be no simple algebraic formula for ηK(n) for general n, despite
the fairly simple combinatorial description. However, there is a simple way to compute ηK(n) in
terms of generating functions, a technique often used in combinatorics. We give it precisely in the
following alternate version of the above proposition.

Proposition 5.2.4. Let K = Q(
√
−5), L = K(

√
2) and n > 1. Write the prime ideal factorization

of (n) in OK as (n) =
∏

pdii
∏

q
ej
j , where each pi ∈ C1, qj ∈ C2 and the pi’s and qj’s are all distinct.

Let πi ∈ OK and αj ∈ OL such that pi = (πi) and qjOL = (αj). Then the irreducible nonassociate
factorizations of n are precisely n = u

∏
πdii
∏
βk where u is a unit, each βk is a product of two

(not necessarily distinct) αj’s and
∏
βk =

∏
α
ej
j .

In particular ηK(n) is the number of ways we can arrange the multiset
{
α

(ej)
j

}
in pairs, i.e.,

the number of partitions of this multiset into sub-multisets of size 2. In other words, if the number
of distinct qj’s is m, then ηK(n) is the coefficient of

∏
x
ej
j in the formal power series expansion of∏

i≤j
1

1−xixj in Z[[x1, x2, . . . , xm]].

In fact we stated this proposition for n ∈ OK , not just n ∈ Z, but it is no more difficult to
prove. Moreover, the description of ηK(n) in terms of coefficients of a power series is essentially a
tautology (use the geometric series expansion for 1

1−xixj and count).
In general, one can prove an analogue of the above using (just) ideals, and the proof is just as

simple as the case of K = Q(
√
−5) we did with quadratic forms. The advantage of the quadratic

forms approach above however is one can explicitly write down the irreducible factorizations of
a rational integer n in OK in terms of the explicit representations of p|n by quadratic forms of
discriminant ∆K , provided ClK ' Cr2 . See [Martin] for the details when r > 1.

(The problem when ClK 6' Cr2 , which is tied to the one class per genus problem, is that if Q is
a quadratic form which does not have order 2 in Cl(∆), then there is no number field L such that
Q factors into linear forms over OL. One can always factor Q into linear forms over some quadratic
field, since Q is just a quadratic polynomial, but the problem is that the coefficients of these linear
forms will only be algebraic integers when Q is ambiguous, hence of order 2 in Cl(∆).)

In [Martin], we prove the following.

Theorem 5.2.5. Let K be a number field and ClK = {Ci}. Let n ∈ OK be a nonzero nonunit.
Suppose the prime ideal factorization of nOK is (n) =

∏
(i,j)∈T pij where the pij’s are (not necessarily

distinct) prime ideals such that pij ∈ Ci, and T is some finite index set. Let Ki be a principalization
field for Ci, so pijOKi = (αij) for some αij ∈ OKi . Let L =

∏
Ki.

Then the irreducible factorizations of n in OK are precisely the factorizations of the form n =∏
βl where

∏
βl ∼

∏
αij in OL and each βl is of the form βl ∼

∏
(i,j)∈S αij in OL for S a minimal

(nonempty) subset of T such that
∏

(i,j)∈S Ci = I. (Here each βl is irreducible in OK .)

In other words, all irreducible factorizations n in OK come from different groupings of the
factorization n ∼

∏
αij in OL. Now a grouping of terms of this factorization in OL gives an
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irreducible factorization in OK if and only if every group of terms gives an irreducible element of
OK (possibly up to a unit in OL). A product of αij ’s gives an element of OK if and only if the
corresponding product of ideal classes Ci is trivial in ClK , and this element of OK will be irreducible
if and only if no proper subproduct of the corresponding ideal classes is trivial.

It should be clear that this theorem gives a precise way that the class group measures the failure
of unique factorization in OK . In particular, the larger the class group, the more complicated the
structure of the irreducible factorizations of an element can become.

Corollary 5.2.6. Let K be a number field and ClK = {Ci}. Let n ∈ OK be a nonzero nonunit.
Suppose (n) =

∏
(i,j)∈T p

eij
ij , where the pij’s are distinct prime ideals, each pij ∈ Cj and T is some

index set. Let U be the multiset U =
{

(i, j)(eij) : (i, j) ∈ T
}
. Then ηK(n) is the number of ways

one can partition the multiset
{
x
eij
ij

}
into minimal subsets V such that

∏
xij∈V Ci = I.

Exercise 5.6. Deduce the following result of Carlitz: Let K be a number field. We say OK is
half-factorial if every irreducible factorization of a given n ∈ OK has the same length. Then OK if
half-factorial if and only if hK ≤ 2.

In general, one defines the elasticity ρK of OK to be maxn∈OK
ρK(n) where ρK(n) is the

maximum ratio of lengths of two irreducible factorizations of n in OK . Similarly, one can use our
theorem above to determine ρK in terms of the structure of the class group (it depends upon more
than just hK). See [Narkiewicz] for complete statements (needless to say, proved there without
recourse to our theorem).
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Part III

Part III
In this, the final part of the course, we will introduce the notions of local and global viewpoints of
number theory, which began with the notion of p-adic numbers. (p as usual denote a rational prime.)
The basic idea is that many problems in number theory can be treated by looking at solutions mod
m. We saw, say with the example of x2 + y2, that we can rule out any number ≡ 3 mod 4 being of
the form x2 + y2.

On the other hand, suppose, for a given n, we knew a mod m solution to

x2 + y2 ≡ n mod m

for eachm. Hasse’s idea was that if these local solutions (solutions modm for eachm) are “sufficiently
compatible,” then we can paste them together to actually construct a global solution in Z. In fact
it suffices to consider the cases where m = pe is a prime power. What it means for the solutions to
be sufficiently compatible means is the following. Consider x2 + y2 = 244. A solution to this in Z
would mean in particular we have solutions mod 2 and mod 4. Here are two:

x2 + y2 ≡ 12 + 12 ≡ 0 mod 2, x2 + y2 ≡ 02 + 22 ≡ 0 mod 4

In the mod 2 solution x, y must both be odd, but in the mod 4 solution both x and y are even, so
there is no way to paste together these local solutions to get a solution in integers, hence we say
they are not compatible.

Essentially what the p-adic integers Zp are, are the elements of

(Z/pZ)× (Z/p2Z)× (Z/p3Z)× · · ·

which are compatible in the above sense. In other words, a p-adic integer x = (xn) gives a congruence
class xn mod pn for each n such that xn+1 ≡ xn mod pn. We can form the field of fractions of the
p-adic integers to obtain the field of p-adic number Qp. The advantage of this is we can use field
theory, which is much stronger than ring theory, whereas we couldn’t do this with a single Z/pnZ,
since Z/pnZ doesn’t embed in a field as there are nontrivial zero divisors (unless n = 1). (Even
though Zp “contains” all of these Z/pnZ’s, it turns out to be an integral domain.)

After discussing the p-adic numbers, we will discuss applications to quadratic forms in several
variables. This naturally leads into the topic of modular forms, which is slated to be taught next
year, and we will not discuss them in any detail here.

We will follow this with an introduction to adéles, which is considered a global way of studying
things. Just like the p-adic numbers put together information mod pn for all n, the adèles AQ put
together Qp for all p. Moreover, one can do all this over an arbitrary number field. Namely, for
any number field K and prime ideal p of OK , one can define the field Kp of p-adic numbers. Then
one define the adéles AK of K, which is essentially a product of all the Kp’s. It turns out that AK
provides an alternative way to study the class group ClK as well as class field theory, which studies
the abelian extensions of K.

The adelic picture is important for several reasons, not least of which is it allows for a vast
generalization of class field theory, known as Langlands’ program, or non-abelian class field theory.
As a special case, Langlands’ program (together with Wiles’ famous work) includes the famous
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Taniyama–Shimura(–Weil) correspondence between elliptic curves and modular forms, which is
famous for proving Fermat’s Last Theorem. While (abelian) class field theory is more or less
considered a closed book now (which is of course not to say that everything is known about abelian
extensions), the Langlands’ program is only in a toddler stage, and lies at the heart of the research
of several faculty members here. The Langlands’ program and the generalized (or grand) Riemann
hypothesis are the two most important outstanding problems in both number theory and the theory
of automorphic forms/representations.

Time permitting, we will give a brief introduction to abelian class field theory and Langlands’
program. The second semester of next year’s Modular Forms course should contain a more detailed
introduction to Langlands’ program.

6 p-adic numbers

Throughout this chapter p will denote a fixed prime number of N.
In the introduction to Part III, we briefly described the p-adic integers are elements in

(an) ∈ (Z/pZ)× (Z/p2Z)× (Z/p3Z)× · · ·

which are compatible in the sense that the natural map Z/pn+1Z→ Z/pZ maps an+1 to an. There
are several different ways to describe the p-adic numbers, which were first introduced by Hensel
at the end of the 1800’s. Before we proceed into the formalities of the p-adic numbers, it may be
interesting to describe Hensel’s original viewpoint of the p-adic numbers.

The basic idea came from an analogy with algebraic geometry. The basic premise of modern
mathematics is that to study some object X, it is helpful to study functions on X. In particular,
to study the complex numbers C, one may choose to study the polynomial ring C[x]. (The space
C is the set of points, and the ring C[x] is called the coordinate ring of C.) One of the early
observations in complex algebraic geometry was that the set of maximal ideals of C[x] is just the
set of (principal) ideals generated by a linear polynomial of the form x− p0 for some point p0 ∈ C.
In other words, there is a bijection between C and the maximal ideals of C[x], given by a point
p0 ∈ C corresponds to the ideal of all polynomials which vanish at p0. Further if f(x) ∈ C[x], then
we have the map

C[x]→ C[x]/(x− p0) ' C
f(x) 7→ f(p0),

i.e., to mod out by a maximal idea (x − p0) in C[x], just means substituting in x = p0 for a
polynomial f(x) ∈ C[x], i.e., this “mod (x− p0)” map C[x]→ C just sends a polynomial f(x) to its
value at a point p0.

Now instead, let’s try to imagine Z in place of C[x] as a coordinate ring. What should the
space of points be? Well, in analogy with the above, a good candidate is the set of maximal ideals
of Z, i.e., the set of all nonzero prime ideals (p) of Z. In other words, if we consider the space
P = {pZ : p ∈ N} of points as the natural number primes, then the coordinate ring “P[x],” i.e.,
the “polynomials on the space P,” are just the integers n ∈ Z. How do we evaluate a “polynomial”
n ∈ Z on a point p ∈ P? Just consider the map

Z→ Z/pZ
n 7→ n mod p.
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In other words, the analogue of polynomials in one variable over C, when we replace C with the set
of primes P, are the functions on P given by integers n ∈ Z such that n(p) = n mod p. One obvious
difference is that for any p0 ∈ C, the space C[x]/(x − p0) ' C, so all functions in the coordinate
ring C[x] really map into C. But in the case of p ∈ P, the spaces Z/pZ are all non-isomorphic, so
it’s harder to think of n(p) = n mod p ∈ Z/pZ as a function, since its image lands in a different
space (Z/pZ) for each p.

To go further with this analogy, one can ask about a notion of derivatives of the functions
n(p) = n mod p. Observe for a polynomial f(x) ∈ C[x], we can always write f(x) in the form

f(x) = a0 + a1(x− p0) + a2(x− p0)2 + · · ·+ ak(x− p0)k

where each ai ∈ C, and the m-th derivative at p0 is just given by m!am. Similarly, for any n ∈ Z,
we can write n in the form

n = a0 + a1p+ a2p
2 + · · ·+ akp

k

where 0 ≤ ai < p, so the m-th derivative at p should be m!am.
Since power series are such a powerful tool in function theory, Hensel wanted to apply the tech-

niques of power series to number theory. If we work with more general functions than polynomials
in C[x], namely analytic functions at p0, we can write them as power series about x = p0

f(x) = a0 + a1(x− p0) + a2(x− p0)2 + · · · ∈ C[[x]] (ai ∈ C).

Analogously, we can consider formal power series in a prime p ∈ P given by

n = a0 + a1p+ a2p
2 + · · · ∈ Zp (0 ≤ ai < p).

These formal power series are the p-adic integers Zp. (Note Zp contains Z by just restrict to finite
sums, i.e., “polynomials” in p.)

Even more generally than analytic functions at p0, one often considers meromorphic functions
on C which may have a pole (go to infinity) at p0, e.g., the Riemann zeta function ζ(s) has a pole at
s = 1. These functions still have a series expansion at p0, but it needs to start with some negative
power of x− p0. These are called Laurent series, and explicitly are of the form

f(x) = a−k(x−p0)−k+a1−k(x−p0)1−k+ · · ·+a0 +a1(x−p0)+a2(x−p0)2 + · · · ∈ C((x)) (ai ∈ C).

Analogous to this, one can take formal power series in p with coefficients between 0 and p with a
finite number of negative terms

n = a−kp
−k + a1−kp

1−k + · · ·+ a0 + a1p+ a2p
2 + · · · ∈ Qp (0 ≤ ai < p),

and this will give us the p-adic numbers Qp. (Note Qp contains all rational numbers with denomi-
nator a power of p.)

This analogy may seem a little far fetched, and you might wonder if Hensel had one too many
beers at this point, but the usefulness of the p-adic numbers allows us to recognize his ideas as
brilliant, as opposed to crazy talk. We summarize the analogy in the table below, though to fully
appreciate it, one should be familiar with complex function theory. Nevertheless, even if you are
not, it may be helpful to refer back to this table after learning more about Zp and Qp.

We can now explain why Zp and Qp are called local objects, specifically, local rings and local
fields. A power or Laurent series expansion of some function f(x) around a point p0 may only
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Table 3: Complex functions vs. p-adic numbers
C—space of points P = {p}—set of primes

C[x]—polynomials over C Z—“polynomials” over P
f(x) = a0 + a1(x− p0) + · · · ak(x− p0)k n = a0 + a1p+ · · ·+ akp

k

functions analytic at p0 Zp—p-adic integers
f(x) =

∑∞
i=0 ai(x− p0)i n =

∑∞
i=0 aip

i

functions meromorphic at p0 Qp—p-adic numbers
f(x) =

∑∞
i=−k ai(x− p0)i n =

∑∞
i=−k aip

i

converge nearby p0, even though the function may be defined (as a meromorphic function) on all of
C. Since a power series is essentially meaningless outside its radius of convergence, power series in
general only give local information about functions f(x) (namely, near p0). Similarly, the elements
of Zp and Qp will give “local” information about the prime p ∈ P.

The main references I will be using for this chapter are [Neukirch] and [Serre], as these were
the books I originally learned the theory from, though most if not all of this material may be
found in many books on algebraic number theory, and of course any book specifically on p-adic
numbers, of which there are a few. There is also a nice analytic/topological presentation in
[Ramakrishnan–Valenza], which leads into adèles.

6.1 Definitions

Fix a prime p ∈ N.

Definition 6.1.1. The set of p-adic integers, denoted Zp, are the formal power series of the form

∞∑
i=0

aip
i = a0 + a1p+ a2p

2 + · · · , 0 ≤ ai < p.

Observe the series
∑∞

i=0 aip
i converges if and only if it is finite, i.e., if ai = 0 for all i > k for

some k. In this case, this finite sum is an integer, and we can get any non-negative integer this way.
Accordingly we will view N ∪ {0} ⊆ Zp.

We can abbreviate this representation as an “infinite” base p representation of a “number:”

∞∑
i=0

aip
i = · · · a2a1a0

Note if the series is in fact finite, then this really is the base p representation of the corresponding
integer:

akak−1 · · · a2a1a0︸ ︷︷ ︸
base p

= a0 + a1p+ a2p
2 + · · ·+ akp

k.

Naively, we can think of a p-adic integer x as just a sequence (ai)
∞
0 of numbers between 0 and p, but

the p-adic numbers will have more structure than just this. We define addition and multiplication
on Zp by just extending the usual addition and multiplication on base p representations of positive
integers.
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Example 6.1.2. Let x = 1 + 4 · 5 + 3 · 52, y =
∑∞

i=0 1 · 5i ∈ Z5, and z = 4 + 2 · 52 +
∑∞

i=3 4 · 5i. We
can compute the sums

· · · 0000341 x
+ · · · 1111111 y

· · · 1112002 x+ y

· · · 0000341 x
+ · · · 4444104 z

· · · 0000000 x+ z

· · · 1111111 y
+ · · · 4444104 z

· · · 1110220 y + z

and we can compute a product

· · · 1111111 1× · · · 1111111
+ · · · 4444440 40× · · · 1111111
+ · · · 3333300 300× · · · 1111111

· · · 4444401 x · y

Since x+ z = · · · 00000, we may identify x with 396 and z with −396 in Z5.

It is easy to see in general, that for any x ∈ Zp, the additive inverse of x (the additive zero is of
course · · · 00000 ∈ Zp) also lies in Zp. Hence we may regard Z ⊆ Zp.

Exercise 6.1. Find the 7-adic representations for −7 and −121.

Exercise 6.2. Let x = 64 ∈ Z7 and y = 4 + 6 · 7 +
∑∞

i=2 2 · 7i ∈ Z7. Compute x+ y and x · y.

Exercise 6.3. What are the p-adic representations for −1 and 1
1−p for arbitrary p?

Proposition 6.1.3. We have that Zp is a ring with Z as a subring.

The proof of this is elementary—it is just base p arithmetic with infinite sequences—but we will
see another justification for this from a more algebraic description below. The statement about Z
being a subring just means that with the identification of Z ⊆ Zp described above, the addition
and multiplication defined on Zp are compatible with those on Z, which is evident from the way we
defined them. Specifically, let φn denote the natural maps

· · · −→ Z/pn+1Z φn−→ Z/pnZ −→ · · · φ2−→ Z/p2Z φ1−→ Z/pZ

Definition 6.1.4. The projective limit (or inverse limit) of Z/pnZ (with respect to φn) as
n→∞ is

lim←−Z/pnZ =

{
(xn) ∈

∏
n

Z/pnZ : φn(xn+1) = xn for all n ≥ 1

}
In other words an element (xn) of lim←−Z/pnZ is a sequence of elements xn ∈ Z/pnZ which is

compatible in the sense that xn+1 ≡ xn mod Z/pnZ. (Recall a direct or injective limit, written lim−→,
is for when we have a sequence of objects which are successively included in each other. A projective
limit is for when we have a sequences of objects which are successive quotients (or projections) of
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each other. This is the natural way to construct an object X, in this case lim←−Z/pnZ, such that each
Z/pnZ is a quotient of lim←−Z/pnZ. It’s of course not the smallest space X such that every Z/pnZ is
a quotient of X—that would be Z—but it is certainly just as natural, if not more so. If you doubt
this, try to figure out how you could construct Z from the set of Z/pnZ’s.)

The reason for the compatibility requirements was already described in the introduction to Part
III. To state this reason a little differently, the idea was that we want to use Zp to study solutions
to equations in Z. If we just look at

∏
n Z/pnZ, it’s not very meaningful. Note that any element

(xn) ∈ Zp is the limit of integers xn ∈ Z, whereas a non-compatible sequence is not a limit of
integers. For instance, the sequence (1, 2, 3, 0, 0, 0, . . .) in

∏
Z/pnZ

Proposition 6.1.5. We have a bijection

Zp → lim←−Z/pnZ
∞∑
n=0

anp
n 7→ (sn)∞n=1

where sn is the (image in Z/pnZ) of the n-th partial sum

sn = a0 + a1p+ a2p
2 + · · ·+ an−1p

n−1.

From now on we use this bijection to identify Zp with lim←−Z/pnZ, and sometimes write our
p-adic integers as formal power series expansions in p, and sometimes write them as sequences in
the projective limit of the Z/pnZ’s. There are some nice features of the projective limit approach.

First, there is a natural map from Z→ Zp = lim←−Z/pnZ given by

a 7→ (a mod p, a mod p2, a mod p3, . . .) ∈
∏
n

Z/pnZ

for any a ∈ Z. Further we can just define addition of and multiplication of elements of
∏

Z/pnZ.
Then it is immediate that Zp is a ring with Z as a subring, i.e., the proof of Proposition 6.1.3
is immediate. (We did not actually check that the two definitions of addition and multiplication
match, but this is certainly true when we restrict to the subring Z, since + and · are the standard
operations then. Since we can approximate any x ∈ Zp as a limit of xn ∈ Z, a density argument
shows + and · extend in a unique way to Zp, so the two definitions of + and · agree.)

Example 6.1.6. Suppose p = 2. Consider n = 75 ∈ Z. As a power series, we can write n =
1 · 1 + 1 · 2 + 1 · 23 + 1 · 26. Alternatively, we can write

n = (1 mod 2, 3 mod 4, 3 mod 8, 11 mod 16, 11 mod 64, 75 mod 128, 75 mod 256, 75 mod 512, . . .)

as a sequence in the projective limit of Z/2nZ. Note in the projective limit version, it’s easier to
write down −n, namely

−n = (−1,−3,−3,−11,−11,−75,−75,−75,−75, . . .).

The usefulness of p-adic integers is that the precisely capture the answer of when an equation
is solvable mod pn for all n.
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Proposition 6.1.7. Consider a polynomial F (x1, . . . , xk) ∈ Z[x1, . . . , xk]. Then

F (x1, . . . , xk) ≡ 0 mod pn

is solvable for all n if and only if
F (x1, . . . , xk) = 0

is solvable in Zp.

Proof. (⇐) Suppose we have a Zp-solution F (x,1 , . . . , xk) = 0. Write xi = (xi1, xi2, xi3, . . .) ∈∏
Z/pnZ. Then F (x1n, . . . xkn) ≡ 0 mod pn for each n.
(⇒) Let x1n, . . . xkn ∈ Z/pnZ be a solution to F (x1n, . . . , xkn) ∈ Z/pnZ for each n. One would

like to say that xi = (xin) ∈ Zp , but the (xin)’s will not in general be compatible. Nevertheless,
we can construct a compatible sequence of solutions.

By the (infinite) pigeonhole principle, there is a (y11, . . . , yk1) ∈ (Z/pZ)k such that

(x1n, . . . , xkn) ≡ (y11, . . . , yk1) mod p

for infinitely many n. Then F (y11, y21, . . . , yk1) ≡ 0 mod p since any of the (x1n, . . . , xkn) above
give a solution mod p.

Similarly, there is a (y12, . . . , yk2) ∈ (Z/p2Z)k such that

(y12, . . . , yk2) ≡ (y11, . . . , yk1) mod p

and
(x1n, . . . , xkn) ≡ (y12, . . . , yk2) mod p2

for infinitely many n. Again we have F (y12, y22, . . . , yk2) ≡ 0 mod p2.
We continue this ad infinitum, and set yi = (yin) ∈

∏
n Z/pnZ, so in fact each yi ∈ Zp. Then

we have F (y1, . . . , yk) = 0 ∈ Zp since this expression must be 0 in each component of Zp =
lim←−Z/pnZ.

In many cases, one can reduce checking the solvabilty of an equation mod pn to simply solvability
mod p. Here is a special case.

Lemma 6.1.8. (Hensel) Let f(x) ∈ Z[x], p a prime and n ∈ N. If p = 2, we assume n ≥ 2.
Suppose f(a) ≡ 0 mod pn for some a ∈ Z, but p - f ′(a). Then for each n ≥ 1 there is an
b ∈ Z/pn+1Z such that f(b) ≡ 0 mod pn+1 and b ≡ a mod pn.

Starting with n = 1 (or 2 if p = 2) applying this inductively, we see that if we have a root a of
a one-variable polynomial f(x) mod p (or mod 4), it lifts to a root an mod pn for all n, provided
f ′(a) 6= 0. In fact, these roots an can be chosen to be compatible so that (an) ∈

∏
Z/pnZ lies in

Zp.
Here f ′(x) is the formal derivative of f(x), in other words the derivative as a real polynomial.

Proof. The Taylor series for f(x) (regarded as a function of a real variable x) about x = a is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
+ · · ·+ f (d)(a)(x− a)d

d!
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where d is the degree of f(x). Suppose we take x of the form x = a+ pny. Then we have

f(x) = f(a) + f ′(a)pny +
f ′′(a)p2ny2

2!
+ · · ·+ f (d)pdnyd

d!

By induction on j, it is easy to see for j ≥ 2 (or j ≥ 3 if p = 2) that pn+1 divides pjn

j! . In other
words, we can have

f(x) ≡ f(a) + f ′(a)pny mod pn+1.

Since f(a) ≡ 0 mod pn, we can write f(a) = a0p
n so

f(x) ≡ a0p
n + f ′(a)ypn ≡ (a0 + f ′(a)y)pn mod pn+1.

Since f ′(a) is nonzero mod p, we can choose 0 ≤ y < p such that a0 + f ′(a)y ≡ 0 mod p, so
f(x) ≡ 0 mod pn+1 and we can take b = x.

There are several ways in which one can generalize Hensel’s lemma, but we will not worry about
these here.

Exercise 6.4. Let a = a0 + a1p+ a2p
2 + · · · ∈ Zp. Show a is a unit in Zp if and only if a0 6= 0.

Exercise 6.5. Show Zp is an integral domain, i.e., there are no zero divisors.

Exercise 6.6. Show x2 = 2 has a solution in Z7.

Exercise 6.7. Write 2
3 as a 5-adic integer.

Since Zp has no zero divisors, it has a field of fractions. By Exercise 6.4, we know the only
nonzero elements of Zp which are not invertible (w.r.t. multiplication) are the elements divisible by
p, hence the field of fractions is obtained by adjoining 1

p to Zp, i.e., the field of fractions of Zp is
Zp[1

p ]. Note that we can write the elements of Zp[1
p ] uniquely in the form p−da where a ∈ Zp and

d ≥ 0. If a = a0 + a1p+ a2p
2 + · · · , we can write

p−da = a0p
−d + a1p

1−d + a2p
2−d + · · · =

∑
n≥−d

a′np
n (6.1)

where a′n = an+d. Thus we may define the p-adic numbers as formal series starting with some finite
negative power of p (called a formal Laurent series in p).

Definition 6.1.9. The p-adic numbers Qp is the set of formal Laurent series

Qp =

∑
n≥−d

anp
n : 0 ≤ an < p, d ≥ 0

 .

We identify Qp with the field of fractions Zp[1
p ] of Zp as in (6.1).

Exercise 6.8. Write 5
12 as a 2-adic number.
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6.2 Valuations

If R is an integral domain, a map | · | : R→ R which satisfies

(i) |x| ≥ 0 with equality if and only if x = 0,
(ii) |xy| = |x||y|, and
(iii) |x+ y| ≤ |x|+ |y|

is called an absolute value on R. Two absolute values | · |1 and | · |2 are equivalent on R if | · |2 = | · |c1
for some c > 0. If we have an absolute value | · | on R, by (ii), we know |1 · 1| = |1| = 1. Similarly,
we know | − 1|2 = |1| = 1, and therefore | − x| = |x| for all x ∈ R.

Now a absolute value | · | on R makes R into a metric space with distance d(x, y) = |x−y|. (The
fact |−x| = |x| guarantees |y−x| = |x−y| so the metric is symmetric, and (iii) gives the triangle in-
equality.) Recall that any metric space is naturally embued with a topology. Namely, a basis of open
(resp. closed) neighborhoods around any point x ∈ R is given by the set of open (resp. closed) balls
Br(x) = {y ∈ R : d(x, y) = |x− y| < r} (resp. Br(x) = {y ∈ R : d(x, y) = |x− y| ≤ r}) centered at
x with radius r ∈ R.

Ostrowski’s Theorem says, that up to equivalence, every absolute value on Q is of one of the
following types:

| · |0, the trivial absolute value, which is 1 on any non-zero element
| · |∞, the usual absolute value on R
| · |p, the p-adic absolute value, defined below, for any prime p.

Here the p-adic absolute value defined on Q is given by

|x| = p−n

where x = pn ab with p - a, b. (Note any x ∈ Q can be uniquely written as x = pn ab where p - a, b
and a

b is reduced.)
In particular, if x ∈ Z is relatively prime to p, we have |x| = 1. More generally, if x ∈ Z,

|x| = p−n where n is the number of times p divides x.
Note any integer x ∈ Z satisfies |x|p ≤ 1, and |x|p will be close to 0 if x is divisible by a high

power of p. So two integers x, y ∈ Z will be close with respect to the p-adic metric if pn|x− y for a
large n, i.e., if x ≡ y mod pn for large n.

Example 6.2.1. Suppose p = 2. Then

|1|2 = 1, |2|2 =
1

2
, |3|2 = 1, |4|2 =

1

4
, |5|2 = 1, |6|2 =

1

2
, . . .

|3
4
|2 = 4, |12

17
|2 =

1

4
, |57

36
|2 = 4.

With respect to | · |2, the closed ball B1/2(0) of radius 1
2 about 0 is simply all rationals (in reduced

form) with even numerator. Similarly B1/4(0) of radius 1
4 about 0 is simply all all rationals (in

reduced form) whose numerator is congruent to 0 mod 4.

Exercise 6.9. Prove | · |p is an absolute value on Q.
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Recall, for a space R with an absolute value | · |, one can define Cauchy sequences (xn) in R—
namely, for any ε > 0, |xm− xn| < ε for all m,n large. One forms the completion of R with respect
to | · | by taking equivalence classes of Cauchy sequences. Everyone knows that the completion of
Q with respect to | · |∞ is R. On the other hand, the completion of Q with respect to | · |p is Qp. To
see this, observe that

x0 = a−dp
−d + a1−dp

1−d + · · ·+ a0

x1 = a−dp
−d + a1−dp

1−d + · · ·+ a0 + a1p

x2 = a−dp
−d + a1−dp

1−d + · · ·+ a0 + a1p+ a2p
2

...

gives a Cauchy sequence in Q with respect to | · |p. Precisely |xn+1 − xn|p = |an+1p
n+1|p = 1

pn+1

(unless xn+1 = xn, in which case it is of course 0). Hence these are Cauchy sequences, and their
limits are just formal Laurent series in Qp. Hence Qp is contained in the completion of Q with
respect to | · |p. It is also not hard to see that any Cauchy sequence in Qp converges (convince
yourself).

Hence, the Qp’s are an arithmetic analogue of R, just being completions of the absolute values
on Q (Q is already complete with respect to the trivial absolute value—Q is totally disconnected
with respect to | · |0). This approach to constructing Qp gives both an absolute value and a topology
on Qp, which are the most important things to understand about Qp.

Precisely, write any x ∈ Qp as

x = amp
m + am+1p

m+1 + · · · , am 6= 0

for some m ∈ Z. Then we define the p-adic (exponential) valuation∗ (or ordinal) of x to be

ordp(x) = m.

Then
|x|p = p−m = p−ordp(x).

Proposition 6.2.2. Zp = {x ∈ Qp : ordp(x) ≥ 0} = {x ∈ Qp : |x|p ≤ 1}. In particular Zp is a
closed (topologically) subring of Qp.

Proof. This is clear since

Zp =

∑
n≥0

anp
n

 ,

so Zp is precisely the set of x ∈ Qp with ordp(x) ≥ 0.

Corollary 6.2.3. The group of units Z×p of Zp is

Z×p = {x ∈ Qp : ordp(x) = 0} = {x ∈ Qp : |x|p = 1} .
∗One often calls absolute values | · | valuations on a field. Thus sometimes there is a question of whether one

means the exponential valuation or the absolute value by the term “valuation.” For clarity, we will reserve the term
valuation for exponential valuation, and always refer to our absolute values as absolute values.
Even the term exponential valuation is somewhat confusing, as the exponential valuation is really the negative

logarithm − logp | · | of the absolute value. “The exponent valuation” might be clearer terminology.
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Proof. This is immediate from Exercise 6.4.

Exercise 6.10. Let p = 5. Determine ordp(x) and |x|p for x = 4, 5, 10, 217
150 ,

60
79 . Describe the (open)

ball of radius 1
10 centered around 0 in Qp.

Exercise 6.11. Let x ∈ Q be nonzero. Show

|x|∞ ·
∏
p

|x|p = 1.

This result will be important for us later.

Despite the fact that R andQp are analogous in the sense that they are both completions of nontrivial
absolute values on Q, there are a couple of fundamental ways in which the p-adic absolute value
and induced topology are different from the usual absolute value and topology on R.

Definition 6.2.4. Let | · | be an absolute value on a field F . If |x+ y| ≤ max {|x|, |y|}, we say | · |
is nonarchimedean. Otherwise | · | is archimedean.

The nonarchimedean triangle inequality, |x+ y| ≤ max {|x|, |y|}, is called the strong triangle
inequality.

Proposition 6.2.5. | · |∞ is archimedean but | · |p is nonarchimedean for each p.

Proof. Everyone knows | · |∞ or Q or R is archimedean—this is what we are use to and the proof is
just |1 + 1|∞ = 2 > 1 = max {|1|∞, |1|∞}.

Now let’s show | · |p is nonarchimedean on Q. Since Q is dense in Qp (Qp is the completion of
Q), this will imply | · |p is nonarchimedean on Qp also. Let x, y ∈ Q. Write x = pma

b , y = pn cd ,
where a, b, c, d are relatively prime to p, and m,n ∈ Z. Without loss of generality, assume m ≤ n.
Then we can write

x+ y = pm
(a
b

+ pn−m
c

d

)
= pm

ad+ pn−mbc

bd
.

Since n ≥ m, the numerator on the right is an integer. The denominator are relatively prime to p
since b, d are, though the numerator is possibly divisible by p (though only if n = m and p|(ad+bc)).
This means that we can write x+ y = pm+k e

f where e, f ∈ Z are prime to p and k ≥ 0. Thus

|x+ y|p = p−m−k ≤ p−m = max
{
p−m, p−n

}
= max {|xp|, |yp|}

Notice that our proof shows that we actually have equality |x + y|p = max {|x|p, |y|p} (since
k = 0 above) except possibly in the case |x|p = |y|p.

Exercise 6.12. Find two integers x, y ∈ Z such that
(i) |x|3 = |y|3 = 1

3 but |x+ y|3 = 1
9 .

(ii) |x|3 = |y|3 = |x+ y|3 = 1
3 .

Proposition 6.2.6. Every ball Br(x) in Qp is both open and closed. Thus the singleton sets in Qp

are closed.

93



Using the fact that the balls are closed, one can show that Qp is totally disconnected, i.e., its
connected components are the singleton sets. However the singleton sets are not open, as that would
imply Qp has the discrete topology, i.e., every set would be both open and closed.

Proof. Each ball is open by definition. The following two exercises show Br(x) is also closed.
Then for any x ∈ Qp, the intersection of the closed sets

⋂
r>0Br(x) = {x}, which must be

closed.

Exercise 6.13. Show Br(x) = x+Br(0) = {x+ y : y ∈ Br(0)}.

Exercise 6.14. Show that Br(0) is closed for any r ∈ R.

Your proof of the second exercise should make use of the fact that | · |p is a discrete absolute
value, i.e., the valuation ordp : Qp → R actually has image Z, which is a discrete subset of R. In
other words, the image of | · |p = p−ordp(·), namely pZ, is discrete in R except for the limit point at
0. On the other hand, the image of the ordinary absolute value | · |∞ on R is a continuous subset of
R, namely R≥0.

Another strange, but nice thing, about analysis on Qp is that a series
∑
xn converges if and

only if xn → 0 in Qp.
While these are some very fundamental differences between R and Qp, you shouldn’t feel that

Qp is too unnatural—just different from what you’re familiar with. To see that Qp isn’t too strange,
observe the following:

Proposition 6.2.7. Qp and R are both Hausdorff and locally compact, but not compact.

Proof. The results for R should be familiar, so we will just show them for Qp.
Recall a space is Hausdorff if any two points can be separated by open sets. Qp is Hausdorff

since it is a metric space: namely if x 6= y ∈ Qp, let d = d(x, y) = |x+ y|p. Then for r ≤ d
2 , Br(x)

and Br(y) are open neighborhoods of x and y which are disjoint.
Recall a Hausdorff space is locally compact if every point has a compact neighborhood. Around

any x ∈ Qp, we can take the closed ball Br(x) of radius r. This is a closed and (totally) bounded
set in a complete metric space, and therefore compact. (In fact one could also take the open ball
Br(x), since we know it is closed from the previous exercise.)

Perhaps more instructively, one can show Br(x) is sequentially compact in Qp, which is equiva-
lent to compactness being a metric space. We may take a specific r if we want, say r = 1. Further
since B1(x) = x+B1(0) by the exercise above, it suffices to show B1(0) = {x ∈ Qp : |x|p ≤ 1} = Zp
is sequentially compact. If

x1 = a10 + a11p+ a12p
2 + · · ·

x2 = a20 + a21p+ a22p
2 + · · ·

x3 = a30 + a31p+ a32p
2 + · · ·

...

is a Cauchy sequence, then for any ε > 0, there is an N ∈ N such that |xm − xn|p < ε for all
m,n > N . Take ε = p−r for r > 0. Then |xm − xn|p < ε = p−r means xm ≡ xn mod pr+1, i.e.,
the coefficients of 1, p, p2, . . . , pr must be the same for all xm, xn with m,n > N . Let a0, a1, . . . , ar
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denote these coefficients. We can do this for larger and larger r (note that a0, . . . , ar−1 will never
change) to get a sequence (an), and then it is clear that the above sequence converges to

x = a0 + a1p+ a2p
2 + · · · ∈ Zp.

This provides a second proof of local compactness.
To see Qp is not compact, observe the sequence x1 = p−1, x2 = p−2, x3 = p−3, . . . has no

convergent subsequence. Geometrically, |xn| = pn, so this is a sequence of points getting further
and further from 0, and the distance to 0 goes to infinity.

We remark that Q, with either usual subspace topology coming from R or the one coming from
Qp, is a space which is not locally compact. The reason is any open neighborhood about a point is
not complete—the limit points are contained in the completion of Q (w.r.t. to whichever absolute
value we are considering), but not in Q. (The trivial absolute value |·|0 induces the discrete topology
on Q, meaning single points are open sets, so it is trivially locally compact.)

The general definition of a local field is a locally compact field, hence we see that Qp and R
are local fields, whereas Q (with the usual topology) is not.
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7 Quadratic forms in n variables

In order to understand quadratic forms in n variables over Z, one is let to study quadratic forms
over various rings and fields such as Q, Qp, R and Zp. This is consistent with the basic premise of
algebraic number theory, which was the idea that to study solutions of a Diophantine equation in
Z, it is useful study the equation over other rings.

Definition 7.0.1. Let R be a ring. A quadratic form in n variables (or n-ary quadratic form)
over R is a homogenous polynomial of degree 2 in R[x1, x2, . . . , xn].

For example x2− yz is a ternary (3 variable) quadratic form over any ring, since the coefficients
±1 live inside any ring R. On the other hand x2− 1

2yz is not a quadratic form over Z, since −1
2 6∈ Z,

but it can be viewed as a quadratic form over Q, Zp for p 6= 2, Q2, R or C since −1
2 lies in each

of those rings. In fact it can be viewed as a quadratic form over Z/nZ for any odd n, as −2 is
invertible mod n whenever n is odd.

The subject of quadratic forms is vast and central to many parts of mathematics, such as linear
algebra and Lie theory, algebraic topology, and Riemannian geometry, as well as number theory.
One cannot hope to cover everything about quadratic forms, even just in number theory, in a single
course, let alone one or two chapters. I will describe the classification of quadratic forms over Qp

and R without proof, explain how one can use this to study forms over Zp and Z, subsequently
prove Gauss’ and Lagrange’s theorems on sums of 3 and 4 squares, and then briefly explain some of
the general theory of representation of numbers by quadratic forms. In particular, we will describe
how studying forms over Zp generalizes Gauss’s genus theory and lead to Siegel’s mass formula,
which is a generalization of Dirichlet’s mass formula to n-ary quadratic forms.

The main “algebraic” question about quadratic forms is how they can be classified, up to equiv-
alence.

Definition 7.0.2. Let Q1(x) = Q1(x1, . . . , xn) and Q2(x) = Q2(x1, . . . , xn) be n-ary quadratic
forms over a ring R. We say Q1 and Q2 are equivalent over R denoted Q1 ∼ Q2, or Q1 ∼R Q2

when we want to specify R, if there exists

σ ∈ GLn(R)

such that
Q2(x) = Q1(σx).

In other words, two forms will be equivalent over R if one is obtained from the other by an
invertible (linear) change of variables over R. This is the same as our definition of equivalence
(not proper equivalence) for binary quadratic forms over Z. Note that equivalent forms over R will
represent the same numbers.

References for this chapter are [Serre], [Cassels], [Gerstein] and [Iwaniec].

7.1 Quadratic forms over fields

The main question about quadratic forms over fields is how they can be classified, and we start with
fields because the classification over fields is much simpler than the classification over rings.
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Let F be a field of characteristic not 2, and Q be an n-ary quadratic form over F . We can write

Q(x1, . . . , xn) =
∑
i≤j

cijxixj =
(
x1 x2 · · · xn

)
A

x1

x2
... xn


where A is a symmetric matrix in Mn(F ). Precisely let A = (aij) where

aij =


cii i = j
1
2cij i < j
1
2cji i > j

.

For example if Q(x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3 + 4x1x2 + 5x1x3 + 6x2x3, then we may write

Q(x1, x2, x3) =
(
x1 x2 x3

)1 1 5
2

1 2 3
5
2 3 3

x1

x2

x3

 .

In this way, quadratic forms in n variables correspond to symmetric n × n matrices. Symmetric
n× n matrices A correspond to symmetric bilinear forms B(x, y) = xTAy on Fn, hence quadratic
forms Q(x) are essentially the same as symmetric bilinear forms B(x, y) (just set Q(x) = B(x, x)),
which is how they arise in linear algebra and Lie groups.

We say Q is nondegenerate if the determinant of the associated matrix is nonzero. This
essentially means that Q is not equivalent to a quadratic form in less than n variables. We will
always assume this.

The first classification results for quadratic forms were in the cases F = R and F = C. Let’s
first go through these.

Theorem 7.1.1. (Sylvester) Let Q be be a nondegenerate quadratic form in n-variables over R.
Then Q is equivalent to x2

1 + · · ·+x2
k−x2

k+1−· · ·−x2
n for some 1 ≤ k ≤ n. Further no two of these

are equivalent.

Proof. Since any symmetric matrix is diagonalizable over R, up to equivalence we may assume the
matrix for Q is diag(a1, . . . , an), i.e., Q is the diagonal form a1x

2
1 + a2x

2
2 + · · · anx2

n. What Q being
nondegenerate means is that no ai = 0 (or else the determinant of the diagonal matrix would be 0).
Thus we can make the (invertible) change of variables which replaces each xi with 1√

|ai|
xi. Under

this transformation, Q becomes

Q(x1, . . . , xn) = sgn(a1)x2
1 + sgn(a2)x2

2 + · · ·+ sgn(an)x2
n,

where sgn(ai) = ai
|ai| is the sign of ai. Since we can permute the xi’s, we can in fact assume the first

k ai’s are positive and the remaining ai’s are negative.
This shows any Q is equivalent to some x2

1 + · · ·+ x2
k − x2

k+1 − · · · − x2
n. Note that the ai’s are

the eigenvalues of the matrix A for Q. Sylvester showed that the number of positive and negative
eigenvalues of STAS is the same for any invertible matrix S. (This known as Sylvester’s law of
inertia.) This proves the classification theorem.
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If we think back to the notion of definite and indefinite forms, only two forms (up to equivalence)
are definite (represent only positive or negative values), namely the positive definite form x2

1+· · ·+x2
n

and the negative definite form −x2
1 − · · · − x2

n.
Contrast what happens over R with what happens over Q.

Theorem 7.1.2. Let Q be a nondegenerate quadratic form in n-variables over C. Then Q is
equivalent to x2

1 + x2
2 + · · ·x2

n.

Proof. As in the real case, we may assume Q is of the form a1x
2
1 + · · · + anx

2
n. But now

√
ai ∈ C

for all i, so making the change of variables 1√
ai
xi, proves the theorem.

Over C, there is no real notion of definite or indefinite since squares may be positive or negative.
In any case, there is only one form over C, up to equivalence.

Note that both over R and C, the classification of quadratic forms is much simpler than the
classification of binary quadratic forms over Z. For one, there are infinitely many equivalence
classes of binary quadratic forms (with no restriction on the discriminant), and even for a fixed
discriminant the structure is rather complicated (though surprisingly beautiful, in that we have
Gauss’s composition law) In particular, while the discriminant is an invariant of the form over Z,
this is not true over R or C. Over R, there is a single invariant of a quadratic form, called the
signature of the form, which is the number of +1 coefficients minus the number of −1 coefficients,
assuming the form is written as x2

1 + · · ·+ x2
k − x2

k+1 − · · · − x2
n.

In general, for a quadratic form Q over any field F (characteristic not 2), we may make a change
of variables to write Q as a diagonal form

Q(x1, . . . , xn) = a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n.

Then the question of classification becomes simply a question of whether each
√
ai ∈ F . If so, then

we can make a change of variables xi 7→ 1√
ai
xi to see Q is equivalent to x2

1 + · · ·+x2
n. In particular,

if F is algebraically closed,
√
ai is always in F , so there is only one (nondegenerate) quadratic form

in n-variables up to equivalence.
In light of the above, the following result should be fairly evident.

Proposition 7.1.3. Any n-ary form Q over F is equivalent to

a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n,

where each ai lies in a set of representatives for F×/F×(2). Here F×(2) denotes the subgroup of
squares of F×.

One can show there are three invariants for a quadratic form Q = a1x
2
1 + · · · anx2

n, the rank (or
number of variables) n, the discriminant disc(Q) = a1a2 · · · an, and the Hasse invariant ε(Q) =∏
i<j

(ai,aj
F

)
= ±1. Here

(a,b
F

)
is the Hilbert symbol which is defined to be +1 if ax2 + by2 = z2

has a nonzero solution over F and −1 otherwise.

Proposition 7.1.4. For p odd, a set of representatives for Q×p /Q
×(2)
p is {1, p, u, up} where u ∈ Z

satisfies
(
u
p

)
= −1. This quotient group is isomorphic to C2 × C2.

Proposition 7.1.5. A set of representatives for Q×2 /Q
×(2)
2 is {±1,±2,±5,±10}. This quotient

group is isomorphic to C3
2 .
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Theorem 7.1.6. Let Q1 and Q2 be quadratic forms over Qp. They are equivalent if and only if
they have the same rank, discriminant and Hasse invariant.

See [Serre] for proofs.

Things are much more complicated over Q since the quotient group Q×/Q×(2) is infinite. For
instance, the primes 2, 3, 5, 7, 11, 13, . . . are all distinct in Q×/Q×(2), as can be easily checked by the
exercise below.

Exercise 7.1. Suppose p and q are two distinct primes p and q. Show p and q do not differ by a
rational square. Consequently Q×/Q×(2) is infinite.

The way to study forms over the global field Q is by reducing the question to studying forms over
the local fields Qp. To be a little more precise, the philosophy is that we can study problems over
Q by studying the associated problems in all of its completions (w.r.t. nontrivial absolute values),
in other words in each Qp and R. This notion is called Hasse’s local-to-global principle.

The simplest precise form of the local-to-global principle is the following theorem of Hasse and
Minkowski. For a quadratic form Q over a field F , we always have Q(0) = 0, and the simplest
representation question is whether Q(x) = 0 for any nonzero x ∈ Fn. If Q(x) = 0 for some
0 6= x ∈ Fn, we say Q represents 0 (nontrivially), or Q is isotropic.

Theorem 7.1.7. (Hasse–Minkowski) Let Q be a quadratic form over Q. Then Q represents 0
(nontrivially) over Q if and only if it does over Qp for each p and over R.

We remark that this statement makes sense because any form over Q can be regarded as a form
over Qp or R since Q ⊆ Qp and Q ⊆ R.

Proof. (Sketch) LetQ be a quadratic form of rank n overQ. By the above we can writeQ(x1, . . . , xn) =
a1x

2
1 + a2x

2
2 + · · · + anx

2
n with each ai ∈ Q. Since Q represents 0 (over Q, Qp or R) if and only if

the form 1
a1
Q does, we may replace Q with 1

a1
Q to assume that a1 = 1. Also, by replacing xi with

an appropriate multiple cixi, we may assume each ai ∈ Z and squarefree. Further it is clear that if
Q represents 0 over Q, it also will over the completions Qp and R. Hence it suffice to show that Q
represents 0 over Q if it does over each Qp and R. We consider various cases.

n = 1. If n = 1, then we have Q(x1) = x2
1, so Q does not represent 0 (nontrivially) over any

field, and there is nothing to prove.

n = 2. If n = 2, write Q(x, y) = x2 − ay2 (here a = −a2). Then Q represents 0 over a field F
if and only if x2 = ay2 has a solution in F , i.e., if and only if a = (xy )2 has a solution in F , i.e., if
and only if a is a square in F . So we want to prove that if a is a square in Qp and a is a square in
R, then a is a square in Q. The condition that a ∈ R×(2) just means a > 0. Note that a ∈ Q×(2)

p

means that ordp(a) is even for each p (since a = b2 implies ordp(a) = 2ordp(b)).
Write a = r

s where r, s ∈ Z in reduced form. If p is a prime dividing r or s, then ordp(a) even
means that p occurs to an even power in the prime factorization of r and s (it will be positive for
one of r and s, and 0 for the other). Hence r

s = a is a square in Q.

n ≥ 3. One can treat the cases n = 3 (due to Legendre) and n = 4 separately, and then prove
the theorem for n ≥ 5 by induction on n by breaking the form up into the sum of a binary form
with a form of rank n− 2. This is done with fairly elementary p-adic analysis.
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Now one might wonder if the Hasse–Minkowski theory unnecessarily complicates the problem
by requiring us to check things over infinitely many fields Qp. In practice however, one only needs
things for finitely many primes. This can even be seen in our proof of the n = 2 case: to check if
a = r

s is a square in Q, it suffices to check it over R and Qp for just the primes p dividing r and s.
One reason representing 0 is a basic question is the following.

Proposition 7.1.8. Suppose Q represents 0 over F . Then Q is universal, i.e., Q represents every
element of F .

The proof is fairly simple: A nontrivial representation Q(x1, . . . , xn) = 0 implies Q “contains”
a product of linear forms. For example, x2

1 + x2
2 − x2

3 = x2
1 + (x2 + x3)(x2 − x3) = x2

1 + yz where
y = x2 + x3, z = x2 − x3. Setting x1 = 0, y = 1 and letting z vary, we see this form is universal.
The general argument is similar, but we will not go through the details—in any event, this example
is essentially the case we will be considering in the next section.

In fact, the Hasse–Minkowski theorem really contains information about a form representing
any a ∈ Q.

Exercise 7.2. Consider a form Q(x1, . . . , xn) over Q and set Qa(x1, . . . , xn+1) = Q(x1, . . . , xn)−
ax2

n+1 for a ∈ Q. Show Q represents a if and only if Qa represents 0. (Hint: use Proposition 7.1.8.)

Exercise 7.3. Let Q be a quadratic form over Q. Deduce from Hasse–Minkowski that Q represents
some a ∈ Q over Q if and only if it does over R and each Qp. (Hint: use the previous exercise.)

One can show that any quadratic form of rank ≥ 4 over Qp represents all p-adic numbers. Then
from previous exercise, one can deduce that for any Q of rank ≥ 4, Q represents a ∈ Q over Q if
and only if it does over R. With this you should easily be able to convince yourself that form of
rank ≥ 4 over Q either represents (i) all nonnegative rationals, (ii) all nonpositive rationals, or (iii)
all rationals, just based on the signs of the coefficients of the form.

This suggests the following phenonemon—it is easy to determine what numbers are represented
by a form Q with rank ≥ 4 (at least over Q), and it is also fairly easy to determine what numbers
are represented by a form of rank 2 (or 1), but the case of rank 3 is considerably more subtle. This
phenomenon persists when restricting to forms over Z as well. This notion of some problems being
easy in low dimensions and high dimensions, but very subtle in middle (often 3 or 4) dimensions,
occurs in other areas of mathematics also, a famous example being the classification of n-manifolds,
which is “simple” in dimensions ≤ 2 or ≥ 5.

7.2 Sums of Squares

Ideally, one would like to use the Hasse–Minkowski theorem to reduce representation problems
over Z to problems over Zp. The general situation is rather complicated, so for simplicity and
completeness, we will show how to apply these ideas to the cases of sums of three and four squares,
following [Serre] and [Gerstein].

Let’s start with the sum of 3 squares over a field F . Recall the Hilbert symbol
(a,b
F

)
is 1 if

ax2 + by2 − z2 represents 0 and is −1 else. Hence x2 + y2 + z2 represents 0 over F if and only if(−1,−1
F

)
= 1. We claim that this is the case if F = Qp, p odd. One can treat specific cases via simple

applications of quadratic reciprocity and Hensel’s lemma.

Exercise 7.4. Suppose p ≡ 1 mod 4. Show −1 is a square in Zp. Deduce x2 + y2 + z2 represents
0 over Qp (in fact Zp), i.e.,

(−1,−1
Qp

)
= 1.
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Exercise 7.5. Suppose p ≡ 3 mod 8. Show −2 is a square in Zp. Deduce x2 + y2 + z2 represents
0 over Qp (in fact Zp), i.e.,

(−1,−1
Qp

)
= 1.

For the general case (well, really we only need it for p ≡ 7 mod 8 after the above exercises) we
will appeal to the following formula.

Proposition 7.2.1. Suppose p is odd, a, b ∈ Qp, and write a = pαu, b = pβv, where u, v are units
of Zp. Then (

a, b

Qp

)
= (−1)αβ

p−1
2

(
u

p

)β(v
p

)α
.

(One extends the Legendre symbol
( ·
p

)
to Z×p by putting

(
a
p

)
=
(
a0
p

)
for a = a0 +a1p+a2p

2 + · · · .
However, we will only apply the above formula in the case where a, b ∈ Z.)

Exercise 7.6. Let p be odd. Compute
(−1,−1

Qp

)
. Deduce that x2 + y2 + z2 is universal over Qp.

Lemma 7.2.2. Let α ∈ Q×. Then α is a sum of 3 rational squares if and only if α > 0 and
−α ∈ Q×(2)

2 .

Proof. By Hasse–Minkowski, α is represented by Q = x2 + y2 + z2 over Q if and only if α is
represented by Q over each Qp and R. The representation condition over R is equivalent to α > 0.
By the above exercise, we know x2 + y2 + z2 represents all α in Qp for p odd, so it suffices to show
x2 + y2 + z2 represents α in Q2 if and only if −α 6∈ Q×(2)

2 .
By an earlier exercise x2 +y2 + z2 represents α in Q2 if and only if x2 +y2 + z2−αw2 represents

0. One can show a rank 4 quadratic form a1x
2 + a2y

2 + a3z
2 + a4w

2 over Qp does not represent 0 if
and only if the discriminant is a square and the Hasse symbol ε =

∏
i<j

(ai,aj
Qp

)
= −

(−1,−1
Qp

)
. When

p = 2, we have
(−1,−1

Qp

)
= −1 so this Hasse symbol condition holds if the discriminant a1a2a3a4 is a

square, which in our case is just −α. This proves the lemma.

To pass to representations over Z, we need the following.

Lemma 7.2.3. (Davenport–Cassels) Let Q be a positive definite quadratic form of rank n over
Q given by a symmetric matrix A = (aij) ∈Mn(Z). Suppose

(DCH) for all x ∈ Qn, there is a y ∈ Zn such that Q(x− y) < 1.

Then if Q represents an integer m over Q, it does over Z.

As in the binary case, positive definite means Q(x) ≥ 0 with equality only if x = 0 ∈ Qn.

Proof. Write 〈u, v〉 = uTAv for u, v ∈ Qn, so that 〈v, v〉 = Q(v).
Suppose Q(v) = 〈v, v〉 = m where v ∈ Qn. Multiplying through by denominators in v =

(v1, . . . , vn), there is a multiple x = tv ∈ Zn of v (for some t ∈ Z) such that Q(x) = Q(tv) = t2m.
Choose v and t such that t is minimal. We want to show t = 1.

(DCH) tells us there is a y ∈ Zn such that z = x
t − y ∈ Qn satisfies Q(z) = 〈z, z〉 < 1. If

〈z, z〉 = 0, then z = 0 (since Q is positive definite), so x
t = y ∈ Zn and t = 1.

Now suppose 〈z, z〉 6= 0. Set

a = 〈y, y〉 −m, b = 2(mt− 〈x, y〉), t′ = at+ b, x′ = ax+ by.

Then a, b, t′ ∈ Z, and it is easy to compute that 〈x′, x′〉 = mt′2 and tt′ = t2〈z, z〉. Consequently
t′ = t〈z, z〉 < t, contradicting the minimality of t.
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Theorem 7.2.4. (Gauss) A positive integer n is a sum of 3 squares if and only if n 6= 4j(8k+ 7).

Proof. Let x = (x1, x2, x3) ∈ Q3. Choose y = (y1, y2, y3) ∈ Z3 such that |xi − yi| ≤ 1
2 . Then

Q(x− y) = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ≤ 1

4
+

1

4
+

1

4
< 1,

i.e., the form x2 + y2 + z2 satisfies (DCH). By the Davenport–Cassels Lemma and the previous
lemma, n is a sum of 3 squares if and only if −n ∈ Q×(2)

2 . Since −n ∈ Z ⊆ Z2, this is equivalent to
−n is a square in Z2 (since x2 = −n in Q2 implies |x2|2 = | − n|2 ≤ 1 which implies |x|2 ≤ 1).

Write
−n = 2e(1 + a1 · 2 + a2 · 22 + · · · ) ∈ Z2.

If n is a square e must be even, and then n is a square in Z2 if and only if

−n
2e

= 1 + a1 · 2 + a2 · 22 + · · ·

is. Using a slight generalization of Hensel’s lemma, we see a ∈ Z×2 is a square if and only if it is
mod 8, i.e., if and only if a ≡ 1 mod 8. Hence −n is a square in Qp if and only if −n = 4j(8m+ 1),
i.e., if and only if n = 4j(8k + 7).

Corollary 7.2.5. (Lagrange) Every positive integer n is a sum of 4 squares.

Proof. If n 6= 4j(8k+7), then it is a sum of 4 squares since it is a sum of 3 squares. If n = 4j(8k+7)
then m = 8k + 6 is the sum of 3 squares so 8k + 7 = m + 12 is the sum of 4 squares, whence n is
also.

We remark that we can’t use the Davenport–Cassels Lemma for sums of 4 squares because
(DCH) fails.

Corollary 7.2.6. (Gauss) Ever positive integer n is a sum of 3 triangular numbers.

(Recall a triangular number is one of the form m(m+1)
2 .)

Proof. Applying the 3 squares theorem to 8n+ 3, we see 8n+ 3 = x2 + y2 + z2 for some x, y, z ∈ Z.
But since the only squares mod 8 are 0, 1, 4, we must have x2 ≡ y2 ≡ z2 ≡ 1 mod 8, so x, y and z
are odd. Write x = 2a+ 1, y = 2b+ 1, z = 2c+ 1. Then

a(a+ 1)

2
+
b(b+ 1)

2
+
c(c+ 1)

2
=

1

8

(
(2a+ 1)2 + (2b+ 1)2 + (2c+ 1)2 − 3

)
=

1

8
(8n+ 3− 3) = n.

7.3 Siegel’s mass formula

Here we give a brief summary of Siegel’s mass formula, following [Iwaniec].
Let Q be a positive definite quadratic form over Z of rank r. The genus of Q is the set forms

over Z which are equivalent to Q over each Qp and R. The group of automorphs Aut(Q) of Q is
the set of σ ∈ GLr(Z) such that σTAσ = A, where A is the symmetric matrix associated to Q. We
say solutions Q(x) = n and Q(y) = n are equivalent if y = σx for some automorph σ of Q.

102



The number of automorphs Aut(Q) in general can be different for different forms in the same
genus. Let gen(Q) denote the set of equivalence classes of forms in the genus of Q. The genus
mass of Q is

w(Q) =
1

|Aut(Q)|m(gen(Q))

where
m(gen(Q)) =

∑
Qj∈gen(Q)

1

|Aut(Qj)|
.

The total mass is ∑
Qj∈gen(Q)

w(Qj) = 1.

Then the number of ways n can be represented by some form in the genus of Q is

rgen(Q)(n) =
∑

Qj∈gen(Q)

w(Qj)rQj (n).

Siegel’s mass formula then states

rgen(Q)(n) =
∏
p

δp(n,Q) · δ∞(n,Q)

where δp(n,Q) is the “density” of solutions Q(x) = n in Zrp. When r = 2 this is essentially Dirichlet’s
mass formula.

So as in the binary case, when we have one class per genus (e.g., for sums of 3 or 4 squares),
one knows the individual rQ(n)’s. But this only happens finitely often, and in general it is hard to
separate out the information about individual forms Q.

To attempt to do this, one approach is to associate to Q a modular form

ΘQ(z) =
∑
n≥0

rQ(n)e2πinz,

which is a meromorphic function. Notice the rQ(n)’s are Fourier coefficients for ΘQ. Consequently,
one can apply analytic methods to study the rQ(n)’s and obtain beautiful formulas in many cases.
Iwaniec uses analytic number theory to show an asymptotic formula for rQ(n) (as n → ∞) for
individual Q’s.

We will not introduce modular forms or discuss other results in this direction here, but the study
of quadratic forms and modular forms is a rich area, and there are many interesting open questions
still out there.
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8 Adèles

Adèles and idèles were introduced in the early 20th century as an approach to class field theory,
which may be viewed as a vast generalization of quadratic reciprocity. First we introduce the notion
of adèles AQ and idèles A×Q over Q. Then we will discuss p-adic numbers for arbitrary number fields
K, and use these to define the adèles AK and idèles A×K of a number field K. One defines the
quotient group A×K/K

× to be the idèle class group of K. Our goal will be to show that this is
essentially the ideal class group of K, and then use this to describe some of the main results of class
field theory.

8.1 AQ

The adèles of Q are the ring

AQ =

{
(α2, α3, α5, . . . ;α∞) ∈

∏
p

Qp × R : αp ∈ Zp for a.a. p

}
.

Here “for a.a. (almost all)” p means for all but finitely many primes p.

Exercise 8.1. With addition and multiplication defined component-wise, show AQ is a ring.

Note that AQ puts together the information one gets from all the completions of Q, but the
whole direct product

∏
Qp × R is too large to work with by itself, so we only consider sequences

where almost all terms are p-adic integers. This is analogous to an infinite direct sum of vector
spaces Vi. Specifically,

⊕∞
i=1 Vi = {(vi) ∈

∏
Vi : vi = 0 for a.a. i}. For instance if each Vi = R, then

a basis for
⊕
Vi is {ei} where ei = (0, . . . , 0, 1, 0, . . .) is the vector with a 1 in the i-th coordinate and

0’s elsewhere. If one removes the “for almost all i” condition, then (1, 1, 1, . . .) = e1 + e2 + e3 + · · ·
would be in the direct sum, but this is not a finite linear combination of basis elements.

Let us simplify now our notation slightly.
We call a nontrivial absolute value on Q a place of Q. Hence the places of Q are | · |v where v

is either a prime p or v = ∞. The places v = p are called finite places, and the place v = ∞ is
called the real place or infinite place.† Let Qv denote the completion of Q w.r.t. | · |v, so Qp still
denotes Qp and now Q∞ denotes R. Let Zv denote the set {xv ∈ Qv : |xv|v ≤ 1}, so that Zv = Zp
if v = p and Z∞ = [−1, 1]. While Zp is the completion of Z in each Qp, Z∞ admittedly has little
to do with Z. Nevertheless this notation is convenient. We also remark that Zv is compact inside
each Qv. In fact when v <∞, i.e., v = p, Zv is open in Qv.

Now we can denote the adèles as

AQ =
{

(αv) ∈
∏

Qv : αv ∈ Zv for a.a. v
}
.

While the condition αv ∈ Zv for a.a. v may at first glance look stronger than the condition αp ∈ Zp
for a.a. p because v = ∞ is allowed, thinking about it for a second shows they are equivalent.
(Think about it for a second: α ∈ AQ means the local components αv can lie outside of Zv only for
v in some finite set S of places (S of course depends on α— it is like the “support” of an element
†It is standard to call places primes and still use the letter p, since they correspond to the usual primes and infinity.

Then the ordinary primes are called finite primes, and denoted by p <∞, and the infinite place is called the infinite
prime p =∞.
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y in the infinite direct sum R∞ =
⊕∞

i=1 R, which is the set of i for which the i-th component of
y is nonzero. We can always add the place ∞ to S if it is not included, and S will still be finite,
meaning we have the condition αv can lie outside of Zv for v ∈ S ∪ {∞}.)

The following examples will tell us a little bit about AQ.

Example 8.1.1. Let x = a
b ∈ Q with a, b ∈ Z. Let α = (x, x, x, . . .). Note that 1

b ∈ Zp for any p
s.t. p - b. Hence x = a

b ∈ Zp for any p s.t. p - b, i.e., x = αv ∈ Zv for almost all v. Thus α ∈ AQ.
Hence we have an (injective) ring homomorphism from Q→ AQ given by

x 7→ (x, x, x, . . .).

So the additive identity of AQ is (0, 0, 0, . . .) and the multiplicative identity of AQ is 1 = (1, 1, 1, . . .).
We will typically identify elements of Q with their image in AQ under this map.

Example 8.1.2. Let α = (1, 0, 0, 0, . . .), β = (0, 1, 1, 1, . . .). Since each component αv, βv ∈ Zv for
all v, we have α, β ∈ AQ. Then αβ = (0, 0, 0, . . .) = 0 ∈ AQ. In other words, α and β are zero
divisors in AQ, so AQ is not an integral domain.

Proposition 8.1.3. For α = (αv) ∈ AQ, let |α| =
∏
v |αv|v. Then | · | : AQ → R satisfies

(i) |α| ≥ 0
(ii) |αβ| = |α||β|

Proof. First note that |α| is well defined: since α = (αv) ∈ AQ satisfies αv ∈ Zv for almost all v,
we have |αv|v ≤ 1 for almost all v, and therefore the infinite product |α| =

∏
v |α|v converges. It is

clear that |α| ≥ 0.
Further (ii) follows immediately because it does for each |α|v.

Example 8.1.4. Taking α = (1, 0, 0, 0, . . .) from the previous example, we see |α| = |1|2
∏
v 6=2 |0|v =

0, so | · | can be zero on nonzero elements. Therefore, | · | cannot technically be an absolute value.
Of course, our earlier definition of absolute values was only for integral domains because any mul-
tiplicative homomorphism | · | : R → R for a non-integral domain must be 0 on some zero divisors.
(αβ = 0 implies |α||β| = |αβ| = 0 so either |α| or |β| is 0.)

However we can even find α ∈ AQ which is not a zero divisor such that |α| = 0. Namely consider
α = (αv) where αp = p and α∞ = 1. Each component αv ∈ Zv so α ∈ AQ, but

α =
∏
p

|p|p · |1|∞ =
∏
p

1

p
= 0.

In fact, another crucial property of absolute values fails also, namely the triangle inequality.

Exercise 8.2. Find α, β ∈ AQ such that |α+ β| > |α|+ |β|.

Example 8.1.5. Let x ∈ Q and α = (x, x, x, . . .). If x = 0, then |α| = 0. Otherwise |α| = 1 by
Exercise 6.11.

The fact that AQ is not an integral domain makes it a little hard to work with, but the idèles
A×Q = {α ∈ AQ : α invertible}, namely the multiplicative subgroup of AQ, become a nice space to
work with.

Proposition 8.1.6. The idèle group A×Q = {(αv) ∈
∏
v Q×v : αv ∈ Z×v for a.a. v} .
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Note that technically we did not define Z×v for v = ∞, but as above including or removing a
single place v =∞ from a “for all but finitely many” condition does not change anything. However,
if one wishes, one can set Z×v = {αv ∈ Q×v : |αv|v = 1} so Zv = Zp for v = p and Zv = {−1, 1} for
v =∞.

Proof. Let α = (αv) ∈ A×Q. It is clear that αv ∈ Q×v for all v, otherwise some component will be
zero.

Let β = (βv) = α−1 ∈ AQ. Since βv ∈ Zv and αv ∈ Zv for almost all v, there is a finite set S of
places v such that αv, βv ∈ Zv for all v 6∈ S. Then αβ = (1, 1, 1, . . .) means αvβv = 1 for all v, so
αv, βv ∈ Z×v for all v 6∈ S, i.e., αv ∈ Z×v for a.a. v.

This proves ⊆. ⊇ is straightforward—see the next exercise.

Exercise 8.3. Let α = (αv) ∈ AQ such that αv 6= 0 for all v and αv ∈ Zv for almost all v. Show
there is a β ∈ AQ such that αβ = 1 = (1, 1, 1, . . .).

One can use the topologies on Qv and Q×v to define topologies on the additive group of adèles
and multiplicative group of idèles, to make them both into topological groups. (We already defined
the topology on Qv in terms of a basis of neighborhoods. One can do the same thing for Q×v , or just
give Q×v the subspace topology from Q×v ⊆ Qv. Both methods give the same topology.) To define a
topology on a group, it suffices to specify a basis of open neighborhoods of the identity.

A basis of open neighborhoods of 0 in AQ is given by a collection of sets of the form∏
v∈S

Uv
∏
v 6∈S

Zv ⊆ AQ

where S is a finite set of places containing ∞ and for each v ∈ S, Uv is an open neighborhood of 0
in Qv. Note the requirement that ∞ ∈ S is because Z∞ = [−1, 1] is a closed set in Q∞ = R, so we
do not want v =∞ occurring in the product on the right.

Similarly, a basis of open neighborhoods of 1 in A×Q is given by a collections of sets of the form∏
v∈S

Uv
∏
v 6∈S

Z×v ⊆ AQ

where S is a finite set of places containing ∞ and for each v ∈ S, Uv is an open neighborhood of 1
in Q×v .

We remark that one can also form a topology of AQ by taking the product topology on
∏

Qv,
and put the subspace topology on AQ. This is different than the topology we described above, and
this topology induced by the product topology is too strong for our purposes. Similar remarks are
true for the topology on A×Q. Further, the topology on A×Q is not the subspace topology induced from
the inclusion A×Q ⊆ AQ, as the open sets in the subspace topology will be too large. For example,

Exercise 8.4. Consider the open set U = R×
∏
p Zp ⊆ AQ. This is an open neighborhood of 1 in

AQ. Show the restriction U∩A×Q contains but does not equal the open neighborhood V = R××
∏
p Z×p

of 1 in A×Q.

A similar, but slightly more technical, argument shows that if V =
∏
v∈S Uv

∏
v 6∈S Z×v is an

open neighborhood of 1 in AQ (where as usual S is a finite set of places), then there is no open
neighborhood U of 1 in AQ whose restriction to A×Q will be contained in V .
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Proposition 8.1.7. AQ and A×Q are locally compact. Furthermore,
(i) a subset U of AQ is relatively compact if and only if U ⊆

∏
vKv where each Kv is compact

in Qv and Kv = Zv for almost all v; and
(ii) a subset U of A×Q is relatively compact if and only if U ⊆

∏
vKv where each Kv is compact

in Q×v and Kv = Z×v for almost all v.

(Recall a set is called relatively compact if its closure is compact.)

Proposition 8.1.8. Q and Q× are discrete subgroups of AQ and A×Q.

Proposition 8.1.9. AQ/Q is compact with the quotient topology, and

AQ/Q ' lim←−
n

R/nZ = {(a1, a2, a3, a4, . . .) : an ∈ R/nZ, an ∈ am +mZ if m|n} .

Thus just like Zp = lim←−Z/pnZ, we can view AQ/Q as a projective limit, i.e., as a way of putting
together all the R/nZ’s in a compatible way.

See [Ramakrishnan–Valenza] for proofs.

8.2 p-adic fields

There are several ways to treat the theory of p-adic fields, just like there are several ways to treat
the theory of p-adic numbers. One common way of defining them is as finite extensions of Qp.
However, I will opt for a concrete approach via completions w.r.t. absolute values, as it is in my
mind more natural.

Let K be a number field and p a prime ideal of K.
In the case K = Q and p = (p), one defines the p-adic absolute value by |x|p = p−m where

x = pma
b and a, b are relatively prime to p. If x = pma ∈ Z, another way to say this is that

|x|p = p−m where m is the highest power of p that divides x, i.e., m is the unique integer such that

pm = (p)m ⊇ (x) 6⊆ pm+1 = (p)m+1.

In fact, using fractional ideals, we can say the same thing even if x 6∈ Z. Specifically, we have a
filtration of Q:

· · · ⊇ p−2 ⊇ p−1 ⊇ p0 = Z ⊇ p1 ⊇ p2 ⊇ · · ·

We define ordp(x) to be the largest m such that x (or (x) if you prefer) is contained in pm = (p)m,
and then set |x|p = p−ordp(x).

Now we return to the general case.

Definition 8.2.1. Let K be a number field and p be a prime ideal of K. For x ∈ K, define the
p-adic valuation ordp(x) to be the largest integer m such that x ∈ pm. Then the p-adic absolute
value on K is given by |x|p = N(p)−ordp(x).

Exercise 8.5. Let p be a prime ideal of K lying above a prime p of Q. Then for x ∈ Q ⊆ K, show
|x|p = |x|fp where f = f(p|p) is the inertial degree of p above p.

As in the case K = Q, these give, up to equivalence, all non-archimedean absolute values on K.
The archimedean values are slightly more complicated then the case of Q, and they are essentially
parametrized by Gal(K/Q). This is because if we want to restrict the usual absolute value on R or
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C to K, it depends upon the embedding of K into R or C, and the embeddings of K into C was
precisely our definition for the Galois group Gal(K/Q).

Let {σ1, . . . σr} denote the set of real embeddings of K and {τ1, τ1, . . . , τs, τ s} denote the set of
complex embeddings of K. Then we define the archimedean absolute values

|x|σi = |σi(x)|R
and

|x|τj = |τj(x)|C
where | · |R is the usual absolute value on R and |z|C = zz is the square of the usual absolute value
on C. It is immediate from the definition of equivalence that

∣∣ cdot|C is equivalent to the usual
absolute value on C, but it is preferable for us to take this normalization, as |z|C is more like a norm
than

√
| · |C. In particular it maps Z[i] into Z. For instance |1 + i|C = (1 + i)(1− i) = 2, but if we

use the usual absolute value, then |1 + i| =
√

2.

Example 8.2.2. Let K = Q(
√

3). Then Gal(K/Q) = {σ1, σ2} where σ1(
√

3) =
√

3 and σ2(
√

3) =
−
√

3. Then
|1 +
√

3|σ1 = |1 +
√

3|R 6= |1−
√

3|R = |1 +
√

3|σ2 .

Example 8.2.3. Let K = Q(
√
−3). Then Gal(K/Q) = {τ, τ} where τ(

√
−3) = i

√
3. Then

|1 +
√
−3|τ = |1 + i

√
3|C = |1− i

√
3|C = |1 +

√
−3|τ .

In general, no absolute values corresponding to two different σi’s or τj ’s will be equivalent, but
we will always have | · |τj = | · |τ j since |z|C = |z|C.

Theorem 8.2.4. The places (equivalence classes of non-trivial absolute values) on K are precisely
given by

(i) v = p where p is a prime ideal of K (non-archimedean places)
(ii) v = σi where σi is a real embedding of K (real places)
(iii) v = τj where τj runs over the set of complex embedding of K, up to complex conjugation

(complex places).

Definition 8.2.5. For a place v of K, let Kv denote the completion of K with respect to | · |v. Let
OKv = {x ∈ Kv : |x|v ≤ 1} and O×Kv

= {x ∈ Kv : |x|v = 1}.
If v = p is a non-archimedean place, we call Kv the p-adic numbers and OKv the p-adic

integers over K.

If K = Q and p = (p) this coincides with our previous definitions. Most of the results on p-adic
numbers over Q extend to p-adic numbers over K, but due to time constraints we will not explain
these in detail except where we need to. A similar remark is true for the theory of adèles and idèles,
which we can now define.

Definition 8.2.6. The adèles of K are

AK = {α = (αv) : αv ∈ Kv for all v, αv ∈ Zv for a.a. v} ⊂
∏
v

Kv.

Similarly, the idèles of K are

A×K =
{
α = (αv) : αv ∈ K×v for all v, αv ∈ Z×v for a.a. v

}
⊂
∏
v

K×v .

In both statements, v runs over the set of places of K.
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As with Q, K and K× embed diagonally into AK and A×K , and in this way we will regard K
and K× as additive and multiplicative subgroups of AK and A×K . One defines the absolute value
on AK or A×K by

|α| = |α|AK
=
∏
v

|αv|v

where α = (αv) ∈ AK . We will usually simply denote the absolute value on AK by |·|, but sometimes
we will use | · |AK

for clarity.

Definition 8.2.7. The idèle class group of K is CK = A×K/K
×.

While AK/K is compact, it is not the case that A×K/K
× is, owing to the fact that the open sets

of A×K are much smaller than the open sets of AK (see above remarks about the difference between
the topologies on AQ and A×Q). However one can prove the following.

Theorem 8.2.8. Let A1
K ⊂ A×K be the subgroup of idèles of K having absolute value 1. Then

K× ⊆ A1
K and the norm 1 idèle class group

C1
K = A1

K/K
×

is compact.

Recall in the caseK = Q, you proved in Exercise 6.11 that the adèlic absolute value |(x, x, x, . . .)|AQ =
1 for x ∈ Q×. A similar argument shows that |x|AK

= |(x, x, x, . . .)|AK
= 1 for any x ∈ K×, which

means K× ⊆ A1
K .

Definition 8.2.9. The ∞-idèles are defined to be

A×K,∞ =
{

(αv) ∈ A×K : αv ∈ O×Kv
for all v <∞

}
⊆ A×K

Exercise 8.6. Check A×K,∞ is a subgroup of A×K . Show its intersection with the subgroup K×, i.e.
A×K,∞ ∩K×, is the group of units O×K (regarded as a subgroup of A×K).

Theorem 8.2.10. The map

A×K → ClK
α = (αv) 7→

∏
pordp(αp)

is a surjective homomorphism with kernel K× · A×K,∞. In particular, this defines an isomorphism

CK/A×K,∞ ' ClK

of the idèle class group mod the ∞-idèles with Dedekind’s ideal class group.

Proof. Note that if αp ∈ O×Kp
, then ordp(αp) = 0 so pordp(αp) = (1) = OK . Since α ∈ A×K means

αp ∈ O×Kp
for all but finitely many p, the product in the definition of the homomorphism is in fact

a finite product so the definition makes sense. It is then obvious it is a homomorphism.

Exercise 8.7. (i) Show for A×K,∞ is in the kernel of the above map into ClK
(ii) Show K× is kernel of the above map into ClK . (Hint: show if x ∈ O×K , then the ideal

(x) = xOK =
∏

pordp(x).)
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It is not much more difficult to show that these subgroups give the whole kernel.
To complete the proof, one needs to show the above map is surjective. Let I be an arbitrary

ideal in ClK , and write the prime ideal factorization as I =
∏

p∈S p
ep where S is some finite set of

primes. Then we can construct an idèle α = (αv) where αv = 1 if v 6∈ S and αp = $
ep
p . Here $p is

a uniformizer of OKp , i.e., ordp($p) = 1. To see that such a $p always exists, just take $p ∈ OK
such that $p ∈ p but $p 6∈ p2.

This leads us to a topological proof of

Corollary 8.2.11. The ideal class group ClK is finite.

Proof. We consider the above map restricted to A1
K . It is easy to see that this is still surjective—in

our construction of α above, we were free to do what we want at the infinite places so we can ensure
|α| = 1. Hence we have an isomorphism

C1
K/A1

K,∞ ' ClK

where A1
K,∞ = A×K,∞ ∩ A×K . However C1

K is compact, and A1
K,∞ is an open subset. Hence the

quotient ClK is both compact and discrete, whence finite.

8.3 Elements of class field theory

Class field theory is regarded as the crowning acheivement of algebraic number theory, just as
quadratic reciprocity was the crowning achievement of elementary number theory. Class field theory
is often described as a characterization of the abelian extensions of a number field, but its explicit
forms generalize quadratic and higher reciprocity laws.

What do we mean by higher reciprocity laws? Well the most basic way of thinking about
quadratic reciprocity is a way to tell if something is a square mod p. Cubic reciprocity is a way to
tell if something is a cube mod p, and similarly there are notions of biquadratic (4th power) and
higher reciprocity laws. Looked at from the point of view of rings of integers, quadratic reciprocity
tells us about the way primes split in quadratic extensions. So you might guess cubic reciprocity
should tell us about the way primes split in (normal) cubic extensions, and so on. In general, Artin
reciprocity (a more explicit form class field theory) tells us how primes split in abelian extensions.

Even to state the main theorems of class field theory is not so simple, and we still need to make
some more definitions.

Let L/K be an extension of number fields. Let P be a prime ideal of L lying above p, a prime
ideal of K. The decomposition group of L/K at P is

G(P|p) = {σ ∈ Gal(L/K) : σ(P) = P} .

Recall that Gal(L/K) acts on the primes of L above p, so the G(P|p) is just the stabilizer of P.
Each element of G(P|p) extends to an automorphism of the completion LP which is trivial on Kp.
One can define Galois groups for extensions of local fields (LP/Kp is a finite extension of degree
f(P|p)) and show Gal(LP/Kp) ' G(P|p).

As in the case of number fields one can define a norm from LP to Kp given by

NP|p(x) = NLP/Kp
(x) =

∏
σ∈Gal(LP/Kp)

σ(x).
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One can also do something similar for the archimedean, or infinite, places. In particular, if v is
an infinite place of L (i.e., an element of Gal(/Q), up to complex conjugation) and w is an infinite
place of K (i.e., an element of Gal(K/Q) up to complex conjugation), we write v|w if the embedding
v : L ↪→ C restricted to K gives the embedding w : K ↪→ C (up to complex conjugation). If v|w,
then Nv|w(z) = z if Lv = Kw = R or C, and Nv|w(z) = zz if Lv = C and Kw = R.

Using this, one can define a norm from A×L to A×K given by

NL/K((αv)v) = (
∏
v|w

Nv|w(αv))w

Exercise 8.8. Let x ∈ L× and regard x = (x, x, x, . . .) ∈ A×L . Show the idèlic norm NL/K(x) lies
in K× ⊆ A×K .

For a number field K, let K denote its algebraic closure, and for a group G let Gab denote is
abelianization (quotient via the commutator subgroup). Note that Gal(K/K)ab “contains” the Ga-
lois group of any abelian extension L/K as a quotient. In fact, there is a maximal abelian extension
Kab of K inside K (infinite degree of course), and we will have Gal(Kab/K) = Gal(K/K)ab. The
extension Kab contains all finite abelian extensions of K.

Now we can at least state some of the “non-explicit” assertions of class field theory:

Theorem 8.3.1. Let K be a number field. There is a homomorphism, called the Artin map,

θK : CK → Gal(Kab/K)

such that
(i) For every finite abelian extension L/K, let θL/K denote the composition of

θL/K : CK
θK→ Gal(Kab/K)→ Gal(L/K)

Then ker θL/K = NL/K(CL), which yields an isomorphism

CK/(NL/KCL) = A×K/(K
× ·NL/K(A×L )) ' Gal(L/K)

(ii) Given any open subgroup of N of CK of finite index, there is a finite abelian extension L of
K with N = ker θL/K . Hence

CK/N ' Gal(L/K).

There are also some functoriality results which say how the Artin maps θK and θL are related
for an extension L/K, but we will pass over these now.

Let ζn = e2πi/n.

Corollary 8.3.2. (Kronecker–Weber) Every abelian extension of Q is contained in Q(ζn) for
some n.

An equivalent way to state this is that the maximal abelian extension Qab of Q in Q is the
compositum of the extensions Q(ζn) for all n.

The basic idea of the proof is the following. Class field theory says the abelian extensions of Q
correspond to the open subgroups of the idèle class group CQ. To understand what these are, we
want to determine the structure of A×Q. Specifically, one can show

A×Q ' Q× × R>0 × Ẑ×
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where Ẑ× = lim←−(Z/nZ)× =
∏
p Z×p . Consequently

CQ ' R>0 × Ẑ×.

Hence if U is an open subgroup of CQ with finite index, then U must be of the form U ' R>0 ×U ′
where U ′ is an open subgroup of finite index in Z×. (Since there are no nontrivial open subgroups
of finite index in R>0.) Then one uses a basis of neighborhoods for 1 in Ẑ× to show that U must
contain NK/Q(CK) where K is some Q(ζn). Consequently the extension corresponding to U must
contain K. (The functor from open subgroups of CK to abelian extensions of K is contravariant
(i.e., inclusion-reversing), just like the functor from subgroups of the absolute Galois group of K to
extensions of K.)

The above theorem of class field theory was established by Takagi, but the existence of a ho-
momorphism θK was given abstractly. It was Artin who was able to give it in an explicit fashion,
which we now briefly describe.

Let L/K be a Galois extension of number fields, p a prime of K and P a prime of L lying above
p. Let f = f(p|p) where p is the prime of Q lying under p, so the residue field OK/p has order
q = pf . The Frobenius map Frq : x 7→ xq generates the Galois group Gal((OL/P)/(OK/p)). The
decomposition group maps to Gal((OL/P)/(OK/p)) via

φ : G(P|p)→ Gal((OL/P)/(OK/p))

by
σ 7→ (aP 7→ σ(a)P).

This is an isomorphism if P|p is unramified, and in this case and we let the Frobenius element
φP|p of Gal(P|p) ⊆ Gal(L/K) be the inverse image φP|p = φ−1(Frq) of Frq in Gal(P|p).

Exercise 8.9. Let L/K be a Galois extension of number fields. Let P and P′ be primes of L lying
above p. Show the decomposition groups G(P|p) and G(P′|p) are conjugate in Gal(L/K).

We regard each Frobenius element φP|p ∈ Gal(P|p) as an element of Gal(L/K). The above
exercise implies for two primes P and P′ of L above p, the Frobenius elements φP|p and φP′|p are
conjugate in Gal(L/K).

If L/K is abelian, then the conjugacy classes of Gal(L/K) are just single elements and the
Frobenius φP|p ∈ Gal(L/K) does not depend upon the choice of prime P above p. Hence in this
case we define the Frobenius at p to be

φp =

(
L/K

p

)
:= φP|p ∈ Gal(L/K)

where P is a prime of L above p. The symbol
(L/K

p

)
is called the Artin symbol.

One can similarly define the Artin symbol
(L/K

v

)
for any place v of K, which will be some

element of Gal(L/K). See [Neukirch] for the complete details.

Theorem 8.3.3. (Artin) Let L/K be a finite abelian extension of number fields. Let $p be a
uniformizer for OKp, i.e., an element of OKp such that ordp($p) = 1. Let xp = (αv) ∈ A×K be the
idèle such that αv = $p for v = p and αv = 1 otherwise.
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We may take Artin map θK above such that

θL/K(xp) = φp =

(
L/K

p

)
for all primes p of K which are unramified in L/K.

The Artin symbol can be used to describe n-th power reciprocity laws. In order to make sense
of this, we should define n-th power residue symbols

(
a
p

)
n
. This should be 1 if a is an n-th power

mod p. But if this is going to be multiplicative, it can’t simply be −1 if a is not an n-th power mod
p (think about the case n = 3). What we need is

(
a
p

)
n
should give a group homomorphism into the

n-th roots of unity, such that the kernel is precisely the set of n-th powers mod p. In fact because of
this, it won’t make sense to define n-th power residue symbols over Q (or Z), but only over number
fields which contain the n-th roots of unity.

Let µn denote the n-th roots of unity.

Definition 8.3.4. Let K be a number field containing µn and v be a place of K. The n-th Hilbert
symbol (

−,−
v

)
n

: K×v ×K×v → µn

is given by (
Kv(

n
√
b)/Kv

v

)
n
√
b = φv(

n
√
b) =

(
a, b

v

)
n

n
√
b.

In other words, the Frobenius φv =
(Kv(

n√
b)/Kv

v

)
is an element of Gal(Kv(

n
√
b)/Kv). But the

conjugates of n
√
b in Kv(

n
√
b)/Kv are just n

√
b times the n-th roots of unity. Hence φv(

n
√
b) is some

n-th root of unity times n
√
b, and we let the n-th Hilbert symbol

(a,b
v

)
n
be that root of unity.

Theorem 8.3.5. Let K be a number field containing µn and v be a place of K. For a, b ∈ K×, we
have ∏

v

(
a, b

v

)
n

= 1.

Proof. We have ∏
v

(
a, b

v

)
n

n
√
b =

∏
v

(
Kv(

n
√
b)/Kv

v

)
n
√
b =

∏
v

θK(
n√
b)/K(a)

n
√
b.

However, any element of K× is in the kernel of the Artin map θK(
n√
b)/K , so the above must equal

n
√
b and the asserted product formula follows.

Definition 8.3.6. Let a ∈ K× where µn ⊆ K. For p a prime of K, we define the n-th power
residue symbol to be (

a

p

)
n

=

(
a,$p

p

)
n

where $p is a uniformizer for Kp. If b ∈ K×, we set(
a

b

)
n

=
∏
pi-n

(
a

pi

)ei
n

,

where (b) =
∏

peii ideal of K.
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It is not too hard to check that(
a

p

)
n

= 1 ⇐⇒ a ≡ xn mod p

and more generally (
a

p

)
n

≡ a
N(p)−1

n mod p.

Theorem 8.3.7. (n-th power reciprocity) Suppose µn ⊆ K×. If a, b ∈ K×, then(
a

b

)
n

=

(
b

a

)
n

∏
v|n∞

(
a, b

v

)
n

.

This follows simply from the above product formula (the previous theorem). See [Neukirch].
In particular, if a and b are prime elements of OK (i.e., they generate prime ideals of OK), and∏

v|n∞
(a,b
v

)
n

= 1, then a is an n-th power mod b if and only if b is an n-th power mod a.

Corollary 8.3.8. (Quadratic Reciprocity) Let K = Q and n = 2. Let a, b be odd coprime
integers. Then (

a

b

)
2

(
b

a

)
2

= (−1)
a−1

2
b−1

2 (−1)
sgn(a)−1

2
sgn(b)−1

2 ,

and (
−1

b

)
2

= (−1)
b−1

2 ,

(
2

b

)
2

= (−1)
b2−1

8 .

Corollary 8.3.9. (Cubic Reciprocity) Let K = Q(ζ3) and n = 3. Suppose p, q are primes (i.e.,
they generate prime ideals) in OK such that p, q ≡ ±1 mod 3. (If (α) is prime in OK which does
not lie above 3, then it has 6 associates, 2 of which are ≡ ±1 mod 3.) Then if p and q lie above
different primes of Q, we have (

p

q

)
3

=

(
q

p

)
3

.

Hence class field theory generalizes quadratic and higher reciprocity laws.

8.4 Non-abelian class field theory

The n-th power reciprocity law says that if p and q are prime elements of K ⊃ µn, then we can
determine whether p is an n-th power mod q based on whether or not q is an n-th power mod p. In
particular, we have (

p

q

)
n

=

(
q

p

)
n

if the product
∏
v|n∞

(p,q
v

)
n

= 1. The proof of this reciprocity law is essentially to look at the Artin
map

θL/K : CK → Gal(L/K)

for the extension L/K where L = K( n
√
a). Since this applies only to abelian extensions, we see

the need for the requirement that µn ⊆ K from the point of view of class field theory. Specifically,
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assuming none of the n-roots of xn − a lie in K, the extension K( n
√
a)/K is abelian (in fact cyclic

of degree n) if and only if µn ⊂ K.
Hence if one wanted to extend the n-th power reciprocity law to Q, one would want some sort

of non-abelian version of class field theory. In fact, one might guess a reciprocity law roughly of the
following form: Let f(x) be an irreducible polynomial over Z. If p and q are odd primes not dividing
n, then one can determine when

f(x) ≡ p is solvable mod q

in terms of when
f(x) ≡ q is solvable mod p.

Indeed this is essentially what n-th power reciprocity says in the case f(x) = xn. Though it seems
likely that a “non-abelian reciprocity law” will be more complicated than this.

To put the notion of reciprocity in a little more imprecise way, recall that x2 ≡ q mod p has
a solution, i.e., x2 − q has a root mod p, if and only if p is split in Q(

√
q). Similarly if p and q

are primes in K, then xn ≡ q mod p has a solution if and only if xn − q has a root mod p, which
means p is split in K( n

√
q). If K( n

√
q)/K is Galois, i.e., if µn ⊂ K, we can in fact say xn ≡ q mod p

if and only if p splits completely in K( n
√
q)/K. Hence we may think of n-th power reciprocity as

a description of which primes split in K( n
√
q)/K. Class field theory can then be thought of as a

description of which primes split in an abelian extension L/K. Thus non-abelian class field theory,
or a non-abelian reciprocity law, should be a description of which primes split in a non-abelian
extension L/K.

Before we think about what the statement of non-abelian class field theory should look like in
general, we sketch out an example.

Example 8.4.1. (Koike, 1985) Let f(x) be an irreducible polynomial of degree 3 over Q, and let
K be the splitting field of f(x). Assume Gal(K/Q) ' S3 and K contains an imaginary quadratic
extension. One can to associate to f(x) the elliptic curve

E : y2 = f(x)

as well as a corresponding modular form

F : H = {z ∈ C : Im(z) > 0} → C

F (τ) =
∞∑
n=1

ane
2πinτ ,

where the an’s are certain Fourier coefficients which determine the function F (τ).
Let np be the number of solutions #E(Fp) to y2 ≡ f(x) mod p. Then the precise correspondence

between E and F is that ap = p+ 1− np. One version of a non-abelian reciprocity law in this case
say that, apart from p lying in a finite set of primes,

p splits completely in K ⇐⇒ ap = 2.

Hence we can describe the set of primes which split completely in K in terms of either (i) arithmetic
data associated to an elliptic curve, or (ii) arithmetic data associated to a modular form.
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Langlands’ conjecture

In order to think about how one might set up a general non-abelian class field theory, let’s go
back to understanding what (abelian) class field theory says. Class field theory says there is an
homomorphism from the idèle class group CK = AK/K× to Gal(Kab/K), which satisfies certain
properties. In particular, we have an isomorphism CK/NL/KCL ' Gal(L/K) for any finite abelian
extension L/K.

If one wants to extend this to non-abelian extensions L/K, one might look for “non-abelian class
groups” G(K) such that G(K) is related to Gal(K/K) and, for any finite Galois extension L/K,
we have G(K)/NL/K(G(L)) ' Gal(L/K), where NL/K(G(L)) is a certain (normal?) subgroup of
G(K) associated to the “non-abelian class group” G(L) of L. It is not clear how such a “non-abelian
class group” could be constructed. However there are very specific conjectures for a non-abelian
generalization if look at the dual picture, i.e., put things in terms of group representations and
L-functions.

If G is a locally compact abelian group, we can consider the set of (unitary) characters, Ĝ,
consisting of continuous homomorphisms G → S1. The set Ĝ is naturally made into a locally
compact abelian group, called the dual group of G. Pontryagin duality says that the dual group
of Ĝ is isomorphic to G in a canonical way. Thus, to study CK or Gal(Kab/K), it is equivalent
to study their dual groups. Characters ω : CK → S1 are called idèle class characters or Hecke
characters. Characters χ : Gal(Kab/K)→ S1 are called 1-dimensional Galois representations.
More generally, an n-dimensional (complex) Galois representation is a continuous homomorphism
ρ : Gal(K/K)→ GLn(C). But a 1-dimensional representation (i.e., a character) of χ : Gal(K/K)→
GL1(C) = C× will have image in S1 factor through Gal(Kab/K), so this agrees with our definition
above.

Consider a 1-dimensional Galois representation χ : Gal(Kab/K) → C×. By composition with
the Artin map, we get a Hecke character

χ ω = χ ◦ θK .

Since the Artin map is not an isomorphism, so one does not necessarily (in fact does not) get all
Hecke characters this way, but one gets all finite order Hecke characters this way. (A character ω
is finite order if ωm = 1 for some natural number m.) Namely, continuity of χ implies χ has finite
image, so it factors through (the Galois group of) a finite abelian extension χ : Gal(L/K) → C×,
consequently ω will factor through CK/N , where N = NL/K(CL). For a finite abelian group G, the
group of characters Ĝ is actually (non-canonically) isomorphic to G, so the above correspondence
of 1-dimensional Galois representations with finite order Hecke characters gives a bijection (in fact
isomorphism) {

ω : CK/N → C×
} 1−1←→

{
χ : Gal(L/K)→ C×

}
.

This correspondence of Galois representations and finite order Hecke characters is equivalent to
abelian class field theory.

Now the natural guess for a “higher dimensional,” or non-abelian analogue of this would be
to get a correspondence with n-dimensional representations of Gal(K/K) for any n. (Again, by
continuity, any given representation will factor through a finite extension Gal(L/K). Moreover, if
n > 1 and the representation is irreducible, then L/K will not be abelian.) The question is, what
group should we pick on the left? This was an insight of Langlands (building on the work of many
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before him). Note that we can view the idèle class group as

CK = A×K/K
× = GL1(K)\GL1(AK).

(Read the latter as GL1(AK) mod GL1(K). We typically write the mod on the left as above
however—we also sometimes write K×\A×K . Of course in this case our groups our abelian, so it
doesn’t matter which side we mod out on, but it will for the non-abelian groups below. The reason
for putting mod on the left is because we sometimes want to mod out by another subgroup on the
right—of course which goes on the left and which on the right is just a matter of convention.)

Conjecture 8.4.2. (Langlands) There is a (partial) 1− 1 correspondence

{automorphic representations π of GLn(K)\GLn(AK)}
1−1
99K←−{

n-dimensional representations ρ of Gal(K/K)
}
.

Roughly, an automorphic representation of a locally compact group G is a irreducible rep-
resentation of G on L2(G). The diagonal subgroup GLn(K) ⊂ GLn(AK) is not normal (for n > 1),
so the quotient GLn(K)\GLn(AK) is not actually a group. Hence this requires some explanation.

First note if G is a finite group, L2(G) is just the C-vector space of C-valued functions on G. We
can take for a basis {eg}g∈G where eg is the characteristic function of g in G. Hence L2(G) ' C[G],
the group algebra, and we know C[G] decomposes as a direct sum of the irreducible representations
of G.

When G is not finite, things are more complicated, but in any event G acts on the space L2(G)
by right multiplication, i.e., g : f(x) → f(xg) for any f ∈ L2(G). In fact if G = GLn(AK), G acts
on L2(GLn(K)\GLn(AK)) in the same way. This representation, the right regular representation
on L2(GLn(K)\GLn(AK)), decomposes into irreducible constituents. What we mean by an auto-
morphic representation of GLn(AK) (or GLn(K)\GLn(AK)) is one of these irreducible constituents.
The term automorphic means that the representation is realized on a space of automorphic forms,
which are functions on GLn(AK) invariant under GLn(K). When n > 1, automorphic representa-
tions are infinite-dimensional representations, and are studied using more harmonic analysis than
algebra, per say.

Langlands’ conjecture states that to each n-dimensional Galois representation ρ : Gal(K/K)→
GLn(C), there is associated (in a way we shall describe below) an automorphic representation
π = π(ρ) of GLn(AK). However in general there will be more automorphic representations than
n-dimensional Galois representations, i.e., not every automorphic representation will correspond
to a Galois representation. This is indicated by the dashed arrow going from left to right in the
conjecture above. This is true even when n = 1, the left hand side is just the set of Hecke characters
of CK , and and so one needs to restrict to finite order Hecke characters to get an honest 1 − 1
correspondence between these two sets of representations in this case.

This conjecture of Langlands suggests that the conjectural group G(K) should contain in some
way each GLn(K)\GLn(AK), so that the representations of G(K) correspond to all Galois repre-
sentations. However this situation is even more ambiguous than the state of Langlands’ conjecutre
above, and in any case understanding the conjecture above would be extraordinary progress to
developing a non-abelian class field theory. For these reasons, we will spend the rest of our time
trying to explain what the above conjecture means.

L-functions
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To describe the conjecture of Langlands above∗, one needs to specify exactly how the represen-
tations should correspond. The answer comes via the construction of L-functions associated to each
representations. Let’s first see what happens in the case n = 1.

Suppose χ is a 1-dimensional representation of Gal(K/K). Then χ factors through a finite
abelian extension

χ : Gal(L/K)→ C× = GL1(C).

If p is a prime of K, recall we have a Frobenius element φp ∈ G(P|p) ⊆ Gal(L/K) where P is a
prime of L above p. Then we define the L-function associated to χ to be

L(s, χ) =
∏

p unram

1

1− χ(φp)N(p)−s
.

One can regard this as a generalization of the Dirichlet L-series, as specializing to the case K = Q
and L = Q(ζm) gives the Dirichlet L-functions mod m.

On the other hand, if ω is a Hecke character

ω : CK = K×\A×K → C×,

we can view ω as a character of A×K which is trivial on K×. This gives a character

ωv : K×v → C×

for any place v of K simply by restricting to the v-component of A×K . Specifically ωv(xv) =
ω(1, . . . , 1, xv, 1 . . .) where the xv occurs in the v-th place. Then one can think of ω =

∏
v ωv.

When v = p, we say ωp is unramified if ωp is trivial on O×Kp
. Then one can define the Hecke

L-function
L(s, ω) =

∏
ωp unram

1

1− ωp($p)N(p)−s
,

where $p is a uniformizer for OKp .
We say the Galois character χ and the Hecke character ω correspond if

L(s, χ) = L(s, ω),

i.e. if χ(φp) = ωp($p) for each unramified p. This is the L-function interpretation of class field
theory. This explicit correspondence of L-functions is amounts the explicit description of the Artin
map.

Now we can define L-functions for higher-dimensional representations. Let

ρ : Gal(K/K)→ GLn(C)

be an n-dimensional Galois representation. Continuity of ρ means there is a finite extension L/K
such that ρ restricted to the subgroup Gal(K/L) is trivial, i.e., ρ factors through

ρ : Gal(L/K)→ GLn(C).

∗This conjecture is also called the strong Artin conjecture or the modularity conjecture. Indeed Langlands
made a series of far-reaching related conjectures, so if one just says “Langlands conjecture,” it is not always clear
which one is being referred to.

118



For any prime p of K and P of L with P|p, we have a surjective homomorphism

G(P|p)→ Gal((OL/P)/(OK/p)).

Recall the group on the left, the decomposition group of P|p, is just the subgroup of Gal(L/K)
which stablizesP. If the inertial degree f(P|p) = 1, in particular if p is unramified in L/K, then this
map is an isomorphism and the group on the right is generated by Frq : x→ xq where q = N(p). In
this case, the Frobenius element φP|p ∈ G(P|p) ⊆ Gal(L/K). Since all the primes of L lying above
p are conjugate in Gal(L/K), all the elements φP|p are conjugate as P ranges over the primes above
p. We let the Frobenius φp = φP|p for some P, so this is well-defined up to conjugacy. Of course
if L/K is abelian, each element is its own conjugacy class, and φp is well-defined as an element of
Gal(L/K).

Since almost all primes p of K are unramified, we can define the (partial) Artin L-function by

L(s, ρ) =
∏

p unram

1

det(In − ρ(φp)N(p)−s)
.

Note even though φp is only well defined up to conjugacy in Gal(L/K), the quantity det(In −
ρ(φp)N(p)−s) is well defined because the determinant is invariant under conjugation. We say this is
a partial L-function because the full or completed Artin L-function is actually defined as a product
of terms over all places v (including the archimedean ones), but the partial and the full L-function
only differ by a product of finitely many terms (which are well understood). For simplicity we will
not define the full L-function, but just mention that at unramified primes p, one needs to take into
account the kernel of the map G(P|p) → Gal((OL/P)/(OK/p)), called the inertial subgroup of
G(P|p).

Let π be an automorphic representation of GLn(AK) ⊂
∏
v GLn(Kv). Then π = ⊗πv where

each πv is a representation of GLn(Kv). For v = p, we say πp is unramified if πp restricted to the
subgroup GLn(OKp) is trivial. At such a place, πv is induced from n 1-dimensional representations
ω1, . . . , ωn placed on the diagonal subgroup of GLn(Kv). Set

A(πv) = diag(ω1($p), . . . , ωn($p)).

Then we define the (partial) automorphic L-function

L(s, π) =
∏

πp unram

1

det(In −A(πp)N(p)−s)
.

Now we can restate Langlands’ conjecture above in more precise terms

Conjecture 8.4.3. (Langlands) There is a (partial) 1− 1 correspondence

{automorphic representations π of GLn(AK)}
1−1
99K←−

{
n-dimensional representations ρ of Gal(K/K)

}
such that

L(s, π) = L(s, ρ),

i.e., for almost all primes p of K, we have

det(In −A(πp)N(p)−s) = det(In − ρ(φp)N(p)−s).
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(If the local factors—called local L-factors or local L-functions—agree for L(s, π) and L(s, ρ)
for almost all places, one can show that the local factors (in the completed L-functions) will all be
the same.)

The first application of Langlands program (this program of attaching automorphic representa-
tions to Galois representations, which has grown into a much more general setting than what we
have presented) is to the following.

Conjecture 8.4.4. (Artin) Let ρ : Gal(K/K) be an irreducible nontrivial Galois representation.
Then L(s, ρ) is entire.

If ρ is trivial, then L(s, ρ) = ζK(s), the Dedekind zeta function of K, has a pole at s = 1. If ρ
is not trivial, Artin conjectures L(s, ρ) is entire, i.e., it has no poles. (The L-function as defined,
converges for Re(s) large, but is known to have meromorphic continuation to the whole complex
plane.) If ρ is 1-dimensional, then this is known because ρ = χ corresponds to a Hecke character ω,
and the Hecke L-functions L(s, ω) for nontrivial ω are known to be entire. It is also easy to see that
if ρ is induced from a 1-dimensional representation χ, then L(s, ρ) = L(s, χ) so L(s, ρ) is entire.

Not much was known about Artin’s conjecture for higher dimensional representations. However,
it is known that if π is a cuspidal automorphic representation, then L(s, π) is entire, so if ρ↔ π, then
L(s, ρ) is also entire. (Any automorphic representation corresponding to a nontrivial irreducible
Galois representation will be cuspidal.) Hence Langlands conjecture implies Artin’s conjecture,
wherefore the above conjecture of Langlands is sometimes called the strong Artin conjecture. (In
fact, the strong Artin conjecture and the Artin conjecture are known to be equivalent in the case of
2 or 3 dimensional representations. It is not clear if they should be equivalent in higher dimensions.)

The first success of the Langlands program is the following result.

Theorem 8.4.5. (Langlands, Tunnell) Suppose ρ : Gal(L/K) → GL2(C) is an irreducible 2-
dimensional representation. If the image of ρ is solvable (a solvable subgroup of GL2(C)), then
ρ↔ π for some cuspidal automorphic representation π of GL2(AK).

This gave new instances of Artin’s conjecture. We remark that Artin’s conjecture, together
with the Grand Riemann Hypothesis (the analogue of the Riemann Hypothesis for more general
L-functions), yields estimates for the error term in the prime number theorem.

However, there is a much more famous consequence of this theorem of Langlands and Tunnell—
Fermat’s Last Theorem. Very roughly, Frey, Ribet and Serre showed that Fermat’s Last Theorem
follows from the Taniyama–Shimura conjecture, which says that to each elliptic curve over Q, there
is an associated modular form, in the sense that their associated L-functions are equal. To prove
Taniyama–Shimura, one associates to an elliptic curve E a family of p-adic Galois representa-
tions ρp : Gal(Q/Q) → GL2(Qp). This much is not difficult. Wiles essentially showed that (for
“semistable” E, which is sufficient for Fermat’s Last Theorem) one can (reduce to a case where one
can) further associate to E a 2-dimensional complex Galois representation ρ : Gal(Q/Q)→ GL2(C),
where ρ has solvable image. Then Langlands–Tunnell applies, and ρ (and hence the elliptic curve
E) corresponds to an automorphic representation π of GL2(AQ). This representation π is naturally
associated to some modular form f , and this gave Taniyama–Shimura (for semistable curves, which
was enough for Fermat’s last theorem—the general case was finished later), and hence Fermat’s last
theorem.
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