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Exercise 0.1. Read the introduction. It’s a roadmap for the course. In fact, you may want to
reread it several times throughout the course to remember where we’ve been and where we’re going.

Introduction

Last semester, we saw some of the power of Algebraic Number Theory. The basic idea was the
following. If for example, we wanted to determine

Which numbers are of the form x2
+ ny2? (1)

Brahmagupta’s composition law tells us that the product of two numbers of this form is again of
this form, and therefore it make sense to first ask

Which primes p are of the form x2
+ ny2

= p? (2)

The idea of Algebraic Number Theory is to work with the ring Z[
√
−n] so any p such that

p = x2 + ny2 = (x + y
√
−n)(x− y

√
−n) factors over Z[

√
−n]. At this point one would like to use

the Prime Divisor Property (or equivalently, Unique Factorization) to say that this means p is not
prime in Z[

√
−n]. Unfortunately this does not always hold in Z[

√
−n], and there were two things

we did to overcome this obstacle. The first was to work with OQ(
√
−n) which is sometimes larger

than Z[
√
−n], and may have unique factorization when Z[

√
−n] does not (we saw this for the case

n = 3—it happens for other values of n also, but still only finitely many times when n > 0).
Otherwise, we should use Dedekind’s ideal theory. The main idea here is we have the Prime

Divisor Property and Unique Factorization at the level of ideas. Hence if p = x2 + ny2, the ideal
(p) = pOQ(

√
−n) in OQ(

√
−n) is not a prime ideal and factors into two principal prime ideals (not

necessarily distinct) (p) = p1p2, each of norm p. Further, p1 = (x + y
√
−n) and p2 = (x− y

√
−n).

In fact, with some slight modifications, the converse is also true. To understand this, we first need
to understand the more basic question

When is pOQ(
√
−n) a prime ideal, and when does it factor? (3)

Once we know for which primes p ∈ N, (p) is not prime in OQ(
√
−n) (in which case we say p splits

in Q(
√
−n)), we need to know

What is the class group of Q(
√
−n)? (4)
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to determine when (p) is a product of two principal ideals in OQ(
√
−n). The first part of the semester

will be motivated by these questions, though we shall spend a lot of our time pursuing related
questions and topics along the way. In other words, our goal is not so much to seek a definitive
answer to the question (2) (see [Cox]), but rather to use it as a guide to understand and pursue
some important topics in number theory. Consequently, we will see how these ideas are related to (i)
Dirichlet’s class number formula, (ii) Dirichlet’s theorem that any arithmetic progression with gcd 1
contains infinitely many primes and (iii) Kummer’s approach to Fermat’s Last Theorem. References
for this part of the course are [Cohn], [Stewart–Tall], [Borevich–Shafarevich], and [Cox]. See also
any book on Algebraic Number Theory.

Even knowing an answer to (2), we still won’t have a complete answer to (1), since the converse
to Brahmagupta’s composition law is not true. For example 6 = x2 +5y2 for x = y = 1, but neither
2 nor 3 are of the form x2 + 5y2. However, we can explain this via Gauss’s theory of quadratic
forms, which in this case says the product of any two numbers of the form 2x2 + 2xy + 3y2 is of
the form x2 + 5y2. Hence the question of which numbers are of the form x2 + 5y2 doesn’t quite
reduce to just determining which primes are of this form. In the second part of the course we will
use Gauss’s theory to determine which numbers are of the form x2 +5y2 by studying the two forms
x2 + 5y2 and 2x2 + 2xy + 3y2 in tandem (as well as understanding where the second form came
from). In fact, we will see there is another approach to this question via Dirichlet’s mass formula,
which in this case tells us the number of solutions to x2 + 5y2 = n and 2x2 + 2xy + 3y2 = n. I
will conclude this section on binary quadratic forms by presenting illustrating how these forms can
be used to quantitatively study the failure of unique factorization in OQ(

√
−5), a very interesting

but largely neglectic topic. References for this section are [Cohn], [Cox], [Borevich–Shafarevich],
[Landau], [Hurwitz], [Dirichlet] and [Narkiewicz]. See also any book on quadratic forms.

The third and final part of the course is motivated by the theory of quadratic forms in n variables.
Some of the theory of binary quadratic forms carries over to the case of more variables, but some
crucial elements do not. We will not be attempting to develop a theory of quadratic forms in n
variables, but rather introduce one of the key elements in this theory, the Hasse-Minkowski principle.
Roughly, this principle says the following: an equation should have a solution in Z if and only if
it has a solution in Z/pkZ for every prime power pk. This statement is not true in general, but
is in special cases. To understand this principle, we’ll talk about valuations and p-adic numbers.
The Hasse-Minkowski principle can then be used to prove Gauss’s famous theorem about which
numbers are the sum of three squares. We will follow [Serre] for this. Another important use of
p-adic numbers is the modern formulation of higher reciprocity (higher than quadratic) laws. These
higher reciprocity laws are given by class field theory, which is typically considered the crowning
achievement in Algebraic Number Theory, most cleanly stated in the modern language of adèles.
Time permitting, we will conclude with a brief discussion of adèles, class field theory and higher
reciprocity laws. Some references this are [Ramakrishnan–Valenza], [Ono], [Kato–Kurokawa–Saito],
[Cohn2], [Cohn3]. See also any book on Class Field Theory.

This may sound like a rather ambitious plan, and it is. Number Theory is a very rich subject,
and one cannot learn even all the central topics of Algebraic Number Theory in a year long course.
Any of these three parts could easily form a one semester long course by themselves (though perhaps
the first or third more so than the second), and class field theory itself should be a year-long course.
Consequently, we will not pursue many topics as deeply as they may deserve (such as Dirichlet’s
Units Theorem), but I will mention important results and ideas throughout the text, which will
hopefully provide at least a good survey of the subject.
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This course is not a standard course in number theory, which is the reason we are not following
a text. Part of this is due to the fact that the first semester was a mix of elementary and algebraic
number theory, whereas they are usually treated separately. But the main reason is my desire
to treat the theory of binary quadratic forms (Questions (1) and (2) as well as the second part
of the course), which is a very beautiful subject (and one of my interests, though not my primary
research focus), but largely neglected in most modern treatments of Algebraic Number Theory (e.g.,
[Neukirch], [Marcus], [Janusz], [Lang], [Stewart–Tall], [Murty–Esmonde]). Notable exceptions are
[Borevich–Shafarevich], [Cohn] and of course [Cox]. However [Borevich–Shafarevich] does not seem
appropriate as a text for this class, [Cohn] virtually only treats quadratic fields, and [Cox] already
assumes a fair amount of knowledge of algebraic number theory (he reviews it, but omits many
proofs). Additionally, [Cohn] and [Cox] say nothing about p-adic numbers. Conversely most books
on quadratic forms do not seem to contain much algebraic number theory, and have a different focus
than I intend for the course.

Furthermore, while the bulk of the first and third part of the course are part of a standard course
in Algebraic Number Theory (usually without adèles), most Algebraic Number Theory courses in
my experience focus on building up general theory for a long time, often requiring sizable tangents
to develop the tools to prove theorems, before being able to get to many applications. While
we will treat general number fields throughout the course (and see places where we need them for
applications), we will in several places restrict our development of the theory to the case of quadratic
fields (though not to the extent of [Cohn]), such as with Minkowski’s theory or the class number
formula. One critique of this approach might be that one loses much depth this way, however I
believe we will gain at least as much as we lose, by being able to go that much deeper into the study
of quadratic fields and quadratic forms, thus gaining a more complete and global understanding of
the “quadratic” theory, and hopefully a better appreciation of the subject. And in the future, if you
need to understand some aspects of the general theory, it would be good to first understand what
happens in the simplest setting, that of quadratic fields.

In fact, it is with future aims in mind, that I want to spend a considerable amount of time at the
end of the semester on p-adic numbers and adèles. Specifically, they are (i) crucial to understanding
modern number theory, (ii) something you need to know about if you end up working with Alan
Roche, Ralf Schmidt or myself, and (iii) something that comes up often in the representation theory
seminar. During the last week of the course, I will plan on giving survey lectures about class field
theory, higher reciprocity laws, and how this leads into the Langlands Program, which is the general
framework for most of the number theory research going on at OU and OSU.

Finally, since we will be using primarily my notes and not a text, please let me know of any
possible errors or unclear portions you may find in the notes so I can address them.
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