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Basic Terminology: The natural numbers are 1, 2, 3, . . .. The integers are . . . ,−3,−2,−1, 0, 1, 2, 3, . . ..
Primes are natural numbers which have precisely 2 factors: 1 and itself; i.e., 2, 3, 5, 7, 11, 13, . . ..
(Note for technical reasons 1 is typically excluded.)

1 The dictionary answer

What is number theory?
It is usually defined as the study of the integer solutions to polynomial equations with integer

coefficients (called Diophantine equations). Some examples are x2+y2 = z2, 3x−5y = 7, y2 = x3+
12x+5 and x2+y2+z2+w2 = 10. You may recognize the first equation as the Pythagorean theorem
(variables suitably interpreted). In other words, the question “what are the integer solutions to
x2 + y2 = z2” is equivalent to asking what are all the integral Pythagorean triples, i.e., what are
the possibilities for right-angled triangles with integral length sides. It is easy to find some—you
probably remember from high school that x = 3, y = 4, z = 5 or x = 5, y = 12, z = 13 work—but
how to determine all (integral) solutions is a more advanced problem.

An elegant way to solve this problem is through the use of complex numbers. In particular,
define the Gaussian integers to be the set of numbers of the form a+ bi where a and b are integers
and i =

√
−1. Thinking in terms of Gaussian integers we can factor the left hand side of the

equation x2 + y2 = z2 to get
αβ = (x+ iy)(x− iy) = z2.

Here α = x + iy and β = x − iy are by definition Gaussian integers. Just like integers can be
factored into primes, the Gaussian integer z2 (which is also an integer) can be factored into what
are called Gaussian primes, and this can be used to determine the possibilities for α = x+ iy and
β = x− iy, and hence the possibilites for x and y.

It may be helpful to illustrate the idea of using prime factorization in a simpler context. Suppose
you want to find the solutions mn = 30 (m, n integers). The prime factorization of 30 is 30 = 2·3·5,
so we can list all possible solutions as

30 = 1 · 30 = 30 · 1 = 2 · 15 = 15 · 2 = 6 · 5 = 5 · 6 = 10 · 3 = 3 · 10.

The idea is that we can solve the equation αβ = z2 in Gaussian integers in a similar way, which
leads to the complete solution (in integers) of our original equation x2 + y2 = z2. This idea is also
described in Section 1.8, and we will do this properly in Chapter 6 of the text. This is considered
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an algebraic approach. There are also so-called elementary approaches to this problem, as were
discovered by the ancient Greeks (cf. Sections 1.6 and 1.7).

Above, I said that number theory is usually defined as the study of the integer solutions of
these equations. However, it is also much more this. In fact the above Pythagorean triple example
illustrates several important features pervasive through number theory:

• Number theory is arguably the oldest branch of mathematics, beginning with counting. For
a long time, mathematics was essentially just number theory and geometry.

• As questions about integer solutions can be boiled down to problems about prime numbers,
perhaps the most central topic in number theory is the study of primes (both the familiar
and more generalized notions such as Gaussian primes).

• Many questions in number theory have geometric interpretations, just as the Pythagorean
triple question is a question about right-angled triangles.

• Many questions in number theory which are very simple to state are in fact very challenging
to solve. In fact, unlike a course in Calculus or Linear Algebra, where most basic questions
you can ask are fairly simple to solve and the subject (at its basic levels) is thought of as a
“closed book,” most basic questions you might think to ask are still unsolved. This has
to do with the mysterious nature of prime numbers, and the richly hidden patterns in nature
and numbers.

In many cases where a solution is found, the solution will require tools from seemingly un-
related areas of mathematics. (Or rather it’s often the case is that by trying to solve these
problems, new areas of mathematics are discovered. It has been said that the two driving
forces within modern mathematics are Number Theory and Calculus. For instance, most of
Modern Algebra was developed out of studying problems in Number Theory.) Moreover, the
problem is often beautiful in how simple the answer is but how the solution itself requires a
new kind of cleverness or way of thinking (as we will see is true for the Pythagorean triple
question in Chapter 6).

All of these things have made number theory the branch of mathematics that, more so than
any other, has fascinated amateurs and professionals throughout the ages.

2 Answered with questions

Another way to answer “what is number theory” is by giving you a representative sample of the
kinds of problems studied in number theory. I hope this will make apparent the “living” nature
of number theory (i.e., that people are still actively discovering new things about it), and in
particular the “easy to state, hard to solve” nature of the field mentioned above which draws many
mathematicians and non-mathematicians to it. Here I will describe several interesting and well
known classical problems below in the form of a quiz. Some of these have been solved long ago,
some not until recently and some are still unsolved. These are very roughly ordered by flavor, and
not by difficulty. For each of these, I would like you to guess which have been solved long ago,
which were solved recently (say within the last 50 years) and which are still unsolved.

Bear in mind that all of these problems are well founded. In other words, while some may seem
random at first, they were well thought out in advance based on numerical evidence.
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The quiz

All numbers are assumed to be integers in the problems below, unless stated otherwise.

1. How many primes are there?

2. Find a formula for the n-th prime number.

3. Are there infinitely many primes of the form 4n+ 1?

4. Are there infinitely many primes of the form n2 + 1?

5. Note that 3 and 5, as well as 5 and 7, 11 and 13, etc. are twin primes, i.e., they differ by 2.
Are there infinitely many twin primes?

6. An arithmetic progression is a sequence of numbers which increase by the same amount each
time. For example, 3, 5, 7 and 11, 17, 23, 29 are arithmetic progressions of primes, of lengths
3 and 4 respectively. Are there arbitrarily long arithmetic progressions of primes?

7. Is every even integer greater than 2 is the sum of two primes?

8. 8 = 23 and 9 = 32 are consecutive numbers which are both powers (squares, cubes, fourth
powers, etc.) of integers. Are there others?

9. Start with any positive n. If it is even divide by two. If it is odd take 3n + 1. Repeat with
the new number. If repeated sufficiently many times, does one eventually get down to 1 for
any initial number n?

10. Find a simple characterization of all numbers which are sums of two squares (i.e., of the form
x2 + y2).

11. Find a simple characterization of all numbers of the form x2 + y2 + 10z2.

12. Find a simple characterization of all numbers which are sums of 4 squares (i.e., of the form
x2 + y2 + z2 + w2).

13. Find a simple characterization of all natural numbers which are sums of 2 cubes of rational
numbers.

14. Find a simple characterization of all natural numbers which are sums of 3 cubes of rational
numbers.

15. Which numbers occur as areas of right triangles whose sides are all integer lengths?

16. Are there solutions in the positive integers to xn + yn = zn for n > 2?

17. Given a Diophantine equation, devise an algorithm to determine whether it has integer solu-
tions or not in a finite number of steps.
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3 Solutions and non-solutions

1. How many primes are there?

Status: Easy. Solved by Euclid (ca. 300 BC). There are infinitely many primes. However,
this seemingly basic question goes much deeper than this. A more refined way of asking this
is: for any x, how many primes are less than x? Conjectured in 1796 by Legendre, and proved
independently exactly 100 years later by Hadamard and de la Vallée Poussin, we in fact know
the asymptotic distribution of prime numbers,

#{primes ≤ x} ∼ x

log x
.

This result is known as the Prime Number Theorem and was proved using complex analysis
and so-called the Riemann zeta function. Since many proofs (all quite difficult, but some
not requiring complex analysis) have been found, until a relatively simple proof was found in
1980 by Newman (using complex analysis). The Prime Number Theorem is only a first-order
asymptotic, and the “best possible” bound on the error term (

√
x log(x)/(8π)) is equivalent

to the famous (still conjectural) Riemann hypothesis. All of this is a central topic in analytic
number theory.

2. Find a formula for the n-th prime number.

Status: There is no known formula (in a sense of easily computable) to generate the prime
numbers, nor is it believed that there is one (at least in a simple sense). Note that such
a formula would be equivalent to an exact formula for π(x), which is quite complicated as
indicated above.

3. Are there infinitely many primes of the form 4n+ 1?

Status: Yes. In fact if p(n) = an + b where a and b have no common factors, then p(n) is
prime infinitely often. This is known as Dirichlet’s theorem on arithmetic progressions and
was proved in 1837 by Dirichlet. In the course of proving this Dirichlet developed much basic
groundwork used in both algebraic and analytic number theory. We will get to the specific
case of 4n+ 1 at the end of Chapter 6.

4. Are there infinitely many primes of the form n2 + 1?

Status: Unsolved. It is easy to see that no (non-constant) polynomial can be prime for all
n. However it is not known if there exists any quadratic (or cubic, quartic, etc.) polynomial
which gives prime values infinitely often. Aside: in 1772, Euler observed that the polynomial
p(n) = n2 + n+ 41 gives prime numbers for all 0 ≤ n < 40, but not for n = 40.

5. Note that 3 and 5, as well as 5 and 7, 11 and 13, etc. are twin primes, i.e., they differ by 2.
Are there infinitely many twin primes?

Status: Still unsolved. Generally believed the answer is yes. In 1966, Chen used analytic
methods to show that there are infinitely many primes p such that p+ 2 is either prime or a
product of two primes. Since I first made this list, there has been a quantum step forward—in
2013, Yitang Zhang (an essentially unknown mathematician lecturing in New Hampshire)1

1This is a quite remarkable story and is worth reading one of the several news/magazine articles about this.
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made a huge breakthrough showing that there is some bound K such that infinitely many
pairs of primes differ by at most K. We still don’t know the answer to twin primes, but
Zhang’s work plus later refinements say we can at least take K ≤ 246. (This would be the
twin prime conjecture if we knew we could take K = 2, but unfortunately the known proofs
do not seem capable of bring K down to 2.)

6. An arithmetic progression is a sequence of numbers which increase by the same amount each
time. For example, 3, 5, 7 and 11, 17, 23, 29 are arithmetic progressions of primes, of lengths
3 and 4 respectively. Are there arbitrarily long arithmetic progressions of primes?

Status: Recently solved! Yes, and this was a big theorem proved by Green and Tao in 2004
using combinatorial and analytic methods (56 pages).

7. Is every even number greater than 2 is the sum of two primes?

Status: Unsolved, though much work has been done, and the answer is believed to be yes.
This was conjectured by Goldbach in a weaker form in 1742 and refined by Euler to the
present form. Much progress has been made by analytic methods, specificially using sieve
techniques. In 1975, Montgomery and Vaughan showed that most even numbers are sums of
two primes. In 1995, Ramaré show that every even number is the sum of at most six primes.
Since I made this list, the weak Goldbach conjecture has been solved (2013, Helfgott, building
on works of others): this says that every odd number greater than 5 is a sum of 3 primes,
and is called the weak Goldbach conjecture because it is implied by the “strong” Goldbach
conjecture (the question above). So now we know weak Golbach is true, but we still don’t
know strong Goldbach.

8. 8 = 23 and 9 = 32 are consecutive numbers which are both powers (squares, cubes, fourth
powers, etc.) of integers. Are there others?

Status: Recently solved! The answer is no. This was conjectured by Catalan in 1844 and
proved by Mihailescu in 2002 using algebraic number theory techniques (28 pages).

9. Start with any positive n. If it is even divide by two. If it is odd take 3n + 1. Repeat with
the new number. If repeated sufficiently many times, does one eventually get down to 1 for
any initial number n?

Status: Unsolved, though much work has been done. This is called the 3n+ 1 or the Collatz
problem, proposed by Collatz in 1937. The iterated nature of the problem makes this a part
of what might be called arithmetic dynamics, a crossroads of dynamical systems and number
theory.

10. Find a simple characterization of all numbers which are sums of two squares (i.e., of the form
x2 + y2).

Status: Solved in 1640 by Fermat, one of the founding fathers of modern number theory
(who was in fact an amateur mathematician—his profession was a judge), though not an
easy problem. The solution comes by way of solving the simpler question of which primes
are sums of two squares. The answer is precisely 2 and the primes of the form 4n + 1! This
will be our main result in Chapter 6. This question, concerning squares as it does, can be
interpreted geometrically, and is a starting point for the very rich area of number theory
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known as quadratic forms (meaning expressions such as x2 + y2, x2 + y2 + 10z2, etc., where
all terms are quadratic).

11. Find a simple characterization of all numbers of the form x2 + y2 + 10z2.

Status: Unsolved, but recent progress. This form is known as Ramanujan’s form. Ramanujan
was a famous Indian mathematician who had a mystical ability to find arithmetic relations,
and remarked on this form’s difficulties in 1916. In 1997, Ono and Soundararajan showed
that the (still conjectural) generalized Riemann hypothesis implies the following answer: all
even numbers not of the form 4k(16m+6) and all odd numbers except 3, 7, 21, 31, 33, 43, 67,
79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719. This is a famous problem in the theory of
quadratic forms, and Ono and Soundararajan show it is intimately related to analytic number
theory as well as algebraic number theory and geometry via elliptic curves.

12. Find a simple characterization of all numbers which are sums of 4 squares (i.e., of the form
x2 + y2 + z2 + w2).

Status: Solved. Even though you might guess that it looks harder than Ramanujan’s form
because of the extra variable, it’s much easier, as is the answer: all integers ≥ 0. This was
proved by Lagrange in 1770, and we will use some simple techniques from algebraic number
theory to prove this result in Chapter 8. (Note: this problem is also easier than the case of 3
squares: x2 + y2 + z2 which was dealt with by Legendre and Gauss decades later.)

13. Find a simple characterization of all natural numbers which are sums of 2 cubes of rational
numbers.

Status: Unsolved! In 1995 Villegas and Zagier showed that the theory of elliptic curves
and modular forms classifies, in a simple way, which primes are sums of 2 cubes, under
the assumption of the Birch–Swinnerton-Dyer (BSD) conjecture, the second most famous
outstanding conjecture in number theory. The result for primes may lead to the result for all
natural numbers, as in the case of the sum of 2 squares.

14. Find a simple characterization of all natural numbers which are sums of 3 cubes of rational
numbers.

Status: Solved by Richmond in 1923. This question is not too hard (unlike the previous),
however this problem (and likely the previous) is much harder if we ask which numbers are
sums of 3 cubes of integers. The smallest unknown case is 33. Computational work is ongoing.
On the other hand, analytic methods have been recently applied to show that most numbers
are sums of 3 cubes without giving any information which ones are. As both the status of
this and the previous problem indicate, while the theory of quadratic forms is very rich, the
theory of cubic forms (polynomial expressions where each term is of degree three) is as yet
very primitive, though there has been spectacular development within the past 50 years.

15. Which numbers occur as areas of right triangles whose sides are all integer lengths?

Status: Unsolved! This is known as the congruent number problem, which seems to go
back to the ancient Greeks. Interestingly enough, in 1983 Tunnell gave an elegant solution
assuming the same conjecture Villegas and Zagier took for granted in their work on the sum
of 2 cubes, the BSD conjecture.

6



16. Are there solutions in the positive integers to xn + yn = zn for n > 2?

Status: Recently solved! You’ve probably heard of this. The answer’s no and it’s called
Fermat’s Last Theorem. Wiles, with help from Taylor, proved it in 1995 using some heavy-
duty algebraic number theory techniques (129 pages). This proof also involves a lot of geometry
via what are called elliptic curves and their relation to modular forms, which stand at a
crossroads of algebraic and analytic number theory. While it would take several years of
serious study to understand the complete proof, we will be able to tackle the case of n = 3
with some simple algebraic number theory in Chapter 7. (The cases n = 4, n = 5 and n = 7
are also relatively easy.)

17. Given a Diophantine equation, devise an algorithm to determine whether it has integer solu-
tions or not in a finite number of steps.

Status: Solved! Sort of. Fairly recently. In 1900, Hilbert presented a famous list of 23
problems, saying that once all of these are solved, we will know all that there is to know
about mathematics. (Some are more ambitious than others, and some are rather vague:
The 6th is axiomatize all of physics. The 8th was the aforementioned Riemann hypothesis
together with Goldbach’s conjecture. Of the 23, 6 are pure number theory, and 2 of these
6 are resolved. In total, somewhere between 10 and 13 have been resolved, depending on
interpretation.) This problem was Hilbert’s 10th. It was resolved in 1959 by Davis and
Putnam, who showed that no such algorithm exists!

Let me remark the person(s) I attribute to solving the problem are for reference purposes only.
A good mathematical problem gets considered by many individuals (sometimes working together,
which is much more common nowadays) and the solution evolves through the effort of many people
over decades or possibly centuries. In the community, people who make important contributions are
usually (often?) appropriately acknowledged, but here I only mention the person(s) who completed
the solution (who do of course typically deserve a lion’s share of the credit). Similarly, while I
occasionally gave the number of pages for the paper with the solution to give you an idea of how
much it involves, bear in mind that these paper build upon previous papers, so in some sense this
is just how long the “last step” of the solution is.

4 Main branches of number theory

Number theory can be divided into many different branches, typically delineated by the kinds of
problems studied as well as the techniques used. I think most mathematicians would agree on the
following as the 3 main categories of number theory, though the actual lines between them are
rather blurry.

• Elementary number theory. While all of the problems stated in the quiz were stated in an
“elementary” way—their statement requires no advanced mathematics—very few of them can
be tackled in an elementary way. One of the main ideas here is to use the idea of divisibility
and some cleverness to prove some results, which one can do for things like the infinitude of
primes (Euclid’s answer to #1 on the quiz), the Pythagorean triple question (cf. Sections 1.6
and 1.7 for the elementary approach—the one we suggested using Gaussian integers is the
“algebraic” approach) or which numbers are sums of squares (#10 on the quiz). A typical
undergrad first course in number theory focuses on elementary number theory.
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• Algebraic number theory. The basic idea of algebraic number theory is to use other
number systems to study the integers and primes, as in the example of introducing the
Gaussian integers for the Pythagorean triple question. (This problem, as well as others, are
included in both the elementary and algebraic categories because there are different ways to
solve it.) We could also consider problems #3, #8, and #10–#16 in the realm of algebraic
number theory.

• Analytic number theory. It turns out that calculus and complex analysis are very powerful
tools which can be applied to number theory problems such as the Prime Number Theorem
(cf. #1, #2). This is rather striking as on the surface these subjects seem very far removed
from one another, but the basic idea is to consider appropriate series for studying the problem
at hand. One might say that the problems #3—#7 are in the realm of analytic number theory,
though it also plays a role in problems such as #10–#16.

As the methods from elementary number theory tend to be rather limited, most number theory
research nowadays involves algebraic or analytic number theory, if not both. For example, the
theory of quadratic forms mentioned above contains aspects of each of elementary, algebraic and
analytic number theory.

Two of the most important tools in modern number theory, as seen in applications to to #11,
#13, #15 and #16 above, are:

• Modular (or automorphic) forms. These arise at a crossroads of algebraic and analytic
number theory. Here at OU (and OSU), our number theory research group specializes more
on the algebraic side (involving groups and representations) of things—in particular Ralf
Schmidt and I often work on the more algebraic aspects of modular and automorphic forms
(which in practice involves a lot of series and integrals).

• Elliptic curves. These are related to modular forms, and lie at an intesection of algebraic
number theory and algebraic geometry. Elliptic curves are also an active area of research,
with the BSD conjecture being one of the biggest problems in the field. While no one at OU
currently works explicitly on elliptic curves (or is an expert in the area), via modular forms
it is related to some of the work we do here.

This semester might be considered a course in elementary algebraic number theory. We will
start with some basic elementary methods, (a la Chapters 1–5, omitting 4), gently introducing
methods of algebraic number theory with the Gaussian integers in Chapter 6, quadratic integers in
Chapter 7, prove Lagrange’s four squares theorem using quaternions in Chapter 8, cover quadratic
reciprocity—the crowning achievement of elementary number theory— in Chapter 9, and then
develop the basic building blocks of algebraic number theory—rings and ideals—in Chapters 10–
11, and explore a generalized notion of primes in Chapter 12.

Some possibilities for the second semester are i) more serious (but not too serious) algebraic
number theory, ii) basic analytic number theory, iii) quadratic forms and iv) elliptic curves. Any of
these could potentially lead into a graduate course on modular forms the subsequent year, though
I am currently leaning towards a combination of algebraic number theory and quadratic forms,
which would be a natural continuation of the material this semester.
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5 Postscript: an example of elementary and analytic techniques

While I partially sketched an example of some simple algebraic number theory by introducing the
Gaussian integers into the Pythagorean triple question, I haven’t really given you any examples of
elementary or analytic number theory techniques. I will illustrate each by giving two proofs of the
infinitude of primes.

Theorem. There are infinitely many primes.

Elementary Number Theory Proof. (Euclid, ca. 300BC; also see Section 1.1 of text) This is
an example of a proof by contradiction, which you should be comfortable with. Suppose on the
contrary there are only finitely many primes. Label them p1, p2, . . . , pk. Let n = p1p2 · · · pk + 1.
Then n divided by pi has remainder 1 for any i = 1, 2 . . . k, i.e., none of the pi’s are factors of n.
This leaves two possibilities: either n itself is prime (if it has no factors besides 1 and n), or it is
not. If n is prime, we have our contradiction and are done.

If n is not prime, n = ab for some 1 < a, b < n. Since no pi is a factor of n, no pi is a factor
of a either. Now we repeat our argument for n with a: either a is prime, or not. It a is prime, we
are done. If not, we apply the argument again with a smaller factor of a. Now this process must
terminate in a finite number of steps (less than n), because we are working with smaller and smaller
integers between 1 and n. Thus we will eventually end with a prime factor of n, contradicting the
assumption that there were only finitely many primes. (This process of going down from n to a
and so on is called descent; cf. Section 1.2.)

Analytic Number Theory Proof. (Euler, ca. 1735) The key idea of Euler is to observe that(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)(
1 +

1

5
+

1

52
+

1

53
+ · · ·

)
· · ·

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · · =

∞∑
n=1

1

n
,

where the product on the left is a product of the quantities

1 +
1

p
+

1

p2
+

1

p3
+ · · ·

as p ranges over all primes. Note that this series is a geometric series with ratio less than 1, so it
is evaluated by

1 +
1

p
+

1

p2
+

1

p3
+ · · · = 1

1− 1/p
.

(If you forgot this, multiply through by the denominator of the right hand side, and the left hand
side telescopes down to 1.) Hence we have

∞∑
n=1

1

n
=
∏
p

1

1− 1/p
=∞

since the left hand side is the harmonic series which diverges. Since each term in the product
over primes is a finite number, for this product to diverge, it must be infinite. I.e., there must be
infinitely many primes! In other words, the infinitude of primes is equivalent to the divergence of
the harmonic series!

9



While the analytic proof may seem unnecessarily complicated (in that it involves some calculus—
it is not actually longer), i) it is certainly beautiful, and ii) the basic ideas in this proof can be
pushed much much further to get strong results like the Prime Number Theorem, which one can’t
do with Euclid’s proof. While we will not pursue these ideas this semester, if you are interested in
learning more about them, look up the Riemann zeta function.
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