
6 The Gaussian integers

6.1 Z[i] and its norm

In the last chapter we looked at real quadratic ring Z[
√
n] (meaning Z[

√
n] ⊆ R) to solve Pell’s

equation
x2 − ny2 = 1

because, over Z[
√
n], x2 − ny2 factors as

x2 − ny2 = (x+ y
√
n)(x− y

√
n).

Precisely, we defined the conjugate of an element α = x + y
√
n to be α = x − y

√
n, and then the

norm to bet
N : Z[

√
n]→ Z

by
N(α) = αα = x2 − ny2.

So the solutions to Pell’s equation are precisely the elements of norm 1 in Z[
√
n], which we showed

form a group under multiplication that is generated by two elements ε and −1.
Similarly if one wants to study the equation

x2 + ny2 = k

it makes sense to look at the imaginary quadratic ring Z[
√
−n] (meaning Z[

√
−n] ⊆ C and Z[

√
−n] 6⊆

R). The imaginary quadratic rings can be treated in the same basic way as the real quadratic rings
theoretically, however their flavor is quite different. For example x2 + ny2 = 1 has only finitely
many solutions, but x2 − ny2 = 1 has infinitely many (for n nonsquare).

For now, we will just treat the simplest case, the Gaussian integers, which were first studied in
detail by Gauss. This ring is related to questions about Pythagorean triples, and more generally,
which numbers are sums of two squares.

Definition 6.1. The Gaussian integers are the ring1

Z[i] = {a+ bi : a, b ∈ Z} .

For α = a+ bi, the conjugate of α is α = a− bi, and the norm is

N(α) = |α|2 = αα = a2 + b2.

Note that if we draw α as a vector in the complex plane, c = |α| denotes the length of this
vector, so the norm of α is just the square of the length of the vector α, i.e., N(α) = c2. Hence the
formula for the norm is precisely the Pythagorean theorem:

αα = a2 + b2 = c2 = N(α).
1As before, I will sometime call a set of numbers a “ring” to stress that it is like Z in some sense. It contains 0, 1

and -1, and you can add, subtract, and multiply as in Z. The formal definition comes in Chapter 10.

38



The reason we want the norm to be the square of the length, instead of just the length is because
c2 is always an integer, but c rarely is, e.g., 12 + 12 =

√
2
2. With this definition, the norm is a map

from the ring Z[i] into the ring of integers Z,

N : Z[i]→ Z.

(In fact the norm will map into N ∪ {0}, unlike in the case of Z[
√
−n].) The fact that it maps into

the integers is very important because of the following.

Proposition 6.2. N : Z[i]→ Z is multiplicative, i.e., N(αβ) = N(α)N(β) for any α, β ∈ Z[i].

Proof. We did this twice already, in Chapters 1 and 5. Check that αβ = α · β by simple multipli-
cation. Then

N(αβ) = αβαβ = ααββ = N(α)N(β).

Hence, through the norm map N : Z[i]→ Z, we will be able to relate the multiplicative structure
on Z to the multiplicative structure on Z[i] (and hence also the theory of divisibility, primes, etc.).
In general, the norm is a fundamental tool in algebraic number theory.

Definition 6.3. Let α ∈ Z[i]. We say α is a unit of Z[i] if N(α) = 1.

The units of Z[i] are ±1,±i. (See exercise below.)

Exercise 6.1. Exercises 6.1.1, 6.1.2 (be precise), 6.1.3.

6.2 Divisibility and primes in Z[i] and Z

Recall that the notion of divisibility in Z is defined as follows: if a, b ∈ Z, we say b|a if a = bc for
some c ∈ Z. (Formally we only defined it for N, but this definition is the same.) Note that this
techincally means (i) any number divides 0, and (ii) if d|n, then (−d)|n.

Similarly we say p ∈ Z is prime if (i) p 6= 0, (ii) p 6= ±1 and (iii) p has no factors other than
±1 and ±p, i.e., up to ±1, the units of Z. In other words, the primes p in Z are the (non-zero)
non-units which only have the trivial factorizations p = 1 · p and p = (−1)(−p). Hence, for us, the
primes of Z are

. . . ,−5,−3,−2, 2, 3, 5, . . . .

We define divisibility in Z[i] the exact same way.

Definition 6.4. Let α, β ∈ Z[i]. We say α divides β, or β|α, if

α = βγ

for some γ ∈ Z[i]. We say α 6= 0 is a Gaussian prime, or prime in Z[i], if α is a non-unit such that
the only divisors of α are ±1,±i, ±α and ±iα, i.e., if the only divisiors of α, up to units, are 1
and α.

Equivalently, we can say α is prime in Z[i] if (i) α 6= 0 (ii) α is not a unit (N(α) 6= 1), and (iii)
the only factorzations α = βγ are the trivial ones, i.e., where one of β and γ is a unit (and therefore
the other is a unit times α).

We can relate divisibility in Z[i] with divisibility in Z via the norm map.
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Lemma 6.5. If β|α in Z[i], then N(β)|N(α) in Z.

Proof. Suppose β|α. Then α = βγ, which implies N(α) = N(β)N(γ) by multiplicativity of the
norm. Hence N(β)|N(α).

Example. α = 4 + i is a Gaussian prime.

Proof. The reason is N(α) = 42 + 12 = 17 which is prime in Z. Hence if β|α, we can write
α = βγ, and N(β)N(γ) = N(α) = 17. The norm is always non-negative, so the only possibilities
are N(β) = 1, N(γ) = 17 or N(γ) = 1, N(β) = 17. By symmetry, we may assume the former. Then
β is a unit (±1 or ±i), so it has an inverse β−1 ∈ Z[i]. Hence γ = β−1α, i.e., a unit times α.

In other words, the only divisors of α are the units and the units times α.

Exercise 6.2. Let α ∈ Z[i]. Show α is a unit of Z[i] if and only if α is invertible in Z[i], i.e.,
αβ = 1 for some β ∈ Z[i]. (Hint: use the multiplicative property of the norm.) In fact, this is the
general definition of a unit in a ring: something is a unit means its invertible (in the ring). The
units always form a multiplicative group. The units of Z are just ±1. The role of {1,−1, i,−i} in
Z[i] is exactly analogous to the role of ±1 in Z.

The text defines α to be a Gaussian prime to be an element of Z[i] such that α is not a product
of two elements of smaller norm. The following exercise shows our definition and the book’s are
equivalent.

Exercise 6.3. Using the definition of Gaussian prime we gave in class, show the following is true:
Suppose α is a non-zero, non-unit. Then α is a Gaussian prime if and only if β|α implies N(β) = 1
or N(β) = N(α). (Cf. Exercise 6.2.1. Hint: look at the example above.) Conclude that if N(α) is
prime in Z, α is a Gaussian prime.

Example. α = 2 is not a Gaussian prime.

Proof. Note N(α) = 22 = 4, so the only reason it couldn’t be a prime in Z[i] is if it is the product
of two elements of norm 2. What are the elements a+ bi of norm 2? Well, N(a+ bi) = a2 + b2, so
there are 4 elements of norm 2: 1 + i, 1− i, −1 + i, and −1− i. We observe that

2 = (1 + i)(1− i) = (−1 + i)(−1− i).

Example. The elements of norm 2: 1 + i, 1− i, −1 + i and −1− i are all Gaussian primes. This
follows from the previous exercise, because their norm is prime in Z.

At this point you might ask if any prime in Z remains prime in Z[i]. The answer, reassuringly,
is yes. In fact, in a way that can be made precise, exactly half of the primes are still prime in Z[i].

Exercise 6.4. Show there are no elements in Z[i] whose norm is of the form 4n+3. Conclude that
if p = 4n+ 3 is prime in Z, then p is also a Gaussian prime. (Cf. Section 6.3)

We will soon see that the primes which do not remain prime in Z[i], are precisely the primes of
the form p = x2 + y2, which will turn out to be 2 and all primes of the form 4n+ 1.
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Proposition 6.6. (Existence of prime factorization.) Let α ∈ Z[i] be a non-zero, non-unit.
Then α factors into a finite product of Gaussian primes.

The proof is the same as for the ordinary integers.

Proof. Here it’s easier to use the book’s definition of Gaussian prime (though our definition is the
more natural one). Either α = βγ where N(β), N(γ) < N(α) or not. If not, α is a Gaussian prime
and we are done. If there is such a factorization, we repeat the process with β and γ. E.g., either
β = β′β′′ with N(β′), N(β′′) < N(β) or not. If not, β is a Gaussian prime. If so, we repeat with β′,
β′′. Because the norms must get smaller and are always at least 1, this process terminates at some
point, leaving us with a prime factorization of α in Z[i].

Exercise 6.5. Factor 17 and 53 in Z[i]. (Exercise 6.2.4.)

6.3 Conjugates

Proposition 6.7. Let p ∈ N be prime. Then p is also prime in Z[i] if and only if p is not the sum
of two squares.

Proof. We will prove the negation of this statement, which is equivalent: p is a sum of two squares
if and only if p is not prime in Z[i].

(⇒) Suppose p = a2 + b2. Then p = (a+ bi)(a− bi). Since p is not a square, both a and b must
be nonzero here, hence a± bi is not a unit. Thus (a+ bi)(a− bi) is a non-trivial factorization of p
in Z[i].

(⇐) This is a typical use of the norm map. Suppose p is not prime in Z[i]. Then p = αβ where
α, β ∈ Z[i] are both non-units, i.e., neither has norm 1. But then N(α)N(β) = N(p) = p2, so
N(α)|p2 but N(α), N(β) 6= 1 implies N(α) = N(β) = p since p is prime in Z. Writing α = a+ bi,
N(α) = p means p = a2 + b2. (The exercise below says that in fact β = α.)

Exercise 6.6. Suppose p ∈ N is prime in Z but factors as p = αβ where α, β are non-units in Z[i].
Show β = α.

In fact, a second look at the proof of (⇐) above gives the following.

Corollary 6.8. Suppose p ∈ N is prime and p = a2 + b2. Then α = a + bi and α = a − bi are
primes in Z[i].

Proof. We know N(α) = N(α) = p, i.e., their norms are prime in N. This means α and α are prime
by Exercise 6.3.

6.4 Division in Z[i]

Recall that the way we proved unique factorization in Z was via the prime divisor property (p|ab =⇒
p|a or p|b), which we proved using the Euclidean algorithm. We will show unique factorization in
Z[i] in the same way.

Proposition 6.9. If α, β ∈ Z[i] are non-zero, then there is a quotient µ ∈ Z[i] and remainder
ρ ∈ Z[i] such that

α = µβ + ρ where N(ρ) < N(β).
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Proof. In the complex plane, multiplication by i is just rotation by 90 degrees. Hence the vectors β
and iβ are orthogonal. Now the set of µβ where µ ∈ Z[i] is just the set of integer linear combinations
of β and iβ, i.e., the square lattice (since β and iβ have the same length |β|) in C generated by β
and iβ.

Now α lies in one of the squares in the lattice (possibly on a line in the lattice), but the furthest
α can be from all 4 corners of a square with side length |β| is |β|/

√
2 (when α is at the center).

Hence α is within distance |β|/
√

2 to some (not necessarily unique) corner µβ.
Then ρ = µβ − α has length at most |β|/

√
2. Since N(ρ) = |ρ|2, we see N(ρ) ≤ |β|2/2 =

N(β)/2.

As before the remainder ρ is 0 if and only if β|α, however the µ and ρ are no longer uniquely
determined.

Example. α = 1 + 3i, β = 2 + 2i. Then we can write α = 1 · β + (i− 1) = (i+ 1)β + (1− i).

However, what is important for us is the following.

Lemma 6.10. Suppose α = µβ + ρ where N(ρ) < N(β). Then ρ = 0 iff β|α.

Proof. (⇒) Clearly if ρ = 0, β|α.
(⇐) Suppose β|α but ρ 6= 0, i.e., α = (µ+ τ)β for some non-zero τ ∈ Z[i], so ρ = τβ. But then

N(β)|N(ρ) =⇒ N(ρ) ≥ N(β), a contradiction. Hence ρ = 0.

Definition 6.11. Suppose δ|α and δ|β. We say δ is a common divisor of α and β. We say δ is
a greatest common divisor (gcd) of α and β if it is a common divisor of α and β with maximum
possible norm.

Note that the gcd is not unique here. For example, ±5,±5i are all gcd’s of 5 and 10. It is not
even clear a priori if the gcd is always unique up to a unit. This will follow from the prime divisor
property or unique factorization.

Lemma 6.12. Suppose α = µβ + ρ where N(ρ) < N(β). If ρ = 0, β is a gcd for α and β. If not,
a gcd for α and ρ is also a gcd for α and β (and vice versa).

Proof. The first statement is clear from the above lemma, because no divisor of β can have norm
larger than N(β).

So suppose ρ 6= 0. Any common divisor of α and β must be a common divisor of α and ρ, and
vice versa. This implies that any gcd of α and β will be a gcd of α and ρ, and vice versa.

This lemma shows that the following algorithm to determine a gcd for α and β in Z[i] always
works. Just as in case of Z, it terminates in a finite number of steps by decent on the norm of the
remainder.

Euclidean algorithm for Z[i]
1. Suppose N(α) ≥ N(β). Let (α1, β1) = (α, β). Set i = 1.
2. Write αi = µiβi + ρi where N(ρi) < N(βi). If ρi = 0, then βi is a gcd for α and β. If not,

continue.
3. Let αi+1 = βi, βi+1 = ρi. Note that N(αi+1) > N(β)i+1 from Step 2. Increase i by 1 and

repeat Step 2 (i.e., repeat Step 2 for αi+1 and βi+1).
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Exercise 6.7. Use the Euclidean algorithm to determine a gcd for α = 5 and β = 3 + 4i in Z[i].

Just like in Section 2.3, we can run the Euclidean algorithm in reverse to get that some gcd of
α and β must be of the form µα+ νβ for some µ, ν ∈ Z[i].

Proposition 6.13. (Prime divisor property) Let π be a prime in Z[i]. If π|αβ then π|α or π|β.

Proof. Suppose π|αβ, but π - α. We want to show π|β. This is the essentially the same argument
we gave for N.

Since π - α and π is prime in Z[i], any gcd of π and α must be a unit. (If not, it would have to
be a non-trivial divisor of π.) By the above, some unit u (some gcd) is a linear combination of π
and α, i.e., u = µπ + να for some µ, ν ∈ Z[i]. Hence

uβ = µπβ + ναβ.

But π divides both terms on the right, π|uβ, so π|β by the simple exercise below.

Exercise 6.8. Let π, β ∈ Z[i] and u be a unit of Z[i]. Show that π|uβ ⇐⇒ π|β.

Another simple exercise is the following, which we will use in the proof of unique factorization.

Exercise 6.9. Suppose π and π′ are primes of Z[i]. Show π|π′ implies π = uπ′ where u is a unit
of Z[i].

Theorem 6.14. (Unique factorization) Let α 6= 0 be a non-unit in Z[i]. Suppose α = π1 · · ·πm

and α = π′1 · · ·π′n are two factorizations of α into Gaussian primes πi and π′j. Then m = n, and up
to a reordering of the π′j’s, we have

πi = uiπ
′
i

for each i, where ui is a unit in Z[i].

Proof. The proof again is almost exactly the same as in the case of N. Suppose the theorem is false.
Cancelling any common factors, assume

π1 · · ·πm = π′1 · · ·π′n

where πi 6= uπ′j for any i, j and unit u. Clearly π1|π′1 · · ·π′n. Since π1 is prime, by the prime divisor
property π1|π′1 or π1|(π′2 · · ·π′n). Now π1|π′1 is impossible since π1 6= uπ′1 for any unit u. Hence
π1|(π′2 · · ·π′n). Repeating this argument eventually gives π1|π′n, a contradiction.

Example. Let α = 6i = 2 · 3i. In Z[i], 3 remains prime since it is not a sum of two squares. This
means 3i is also a prime in Z[i] since i is just a unit. On the other hand, 2 = (1 + i)(1 − i) and
we know 1± i are prime in Z[i] because their norms (both 2) are prime in N. Unique factorization
says that

6i = (1 + i)(1− i)(3i)

is the only factorization of 6 into primes of Z[i], up to reordering and multiplying each factor by a
unit, i.e., we consider

6i = (−3)(i− 1)2

to be equivalent to the factorzation above since −3 = i ·(3i), (i−1) = i ·(1+i) and (i−1) = −(1−i).
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Exercise 6.10. Let u be a unit in Z[i]. Show π is prime in Z[i] if and only if uπ is prime in Z[i].

We say the primes π and uπ (u a unit) are associated. Hence we say primes π and π′ are
nonassociated if they do not differ by units. Just as in the case of Z, unique factorization implies
the following.

Corollary 6.15. Let π1, . . . , πn be nonassociated primes of Z[i]. Suppose α = πe1
1 · · ·πen

n and β =
πf1

1 · · ·π
fn
n (where ei, fi ≥ 0). Then any gcd of α and β equals a unit times πmin(e1,f1)

1 · · ·πmin(en,fn)
n .

Hence “the” gcd of two elements is unique up to units. Moreover, it satisfies the property that
if µ and ν are relatively prime (i.e., their gcd is 1) common divisors of α and β, then µν divides
“the” gcd of α and β.

Example. To see what can go wrong with the gcd when we don’t have unique factorization, consider
the example of

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) ∈ Z[

√
−5].

Then what is the gcd of α = 6 and β = 2(1 +
√
−5)? Both 2 and 1 +

√
−5 (which themselves are

relatively prime) are common divisors, but their product is not a common divisor. In this specific
example, we could say that 1+

√
−5 should be “the” gcd because it has larger norm, but philosophically

2 should also be a gcd, because no multiple of 2 divides both α and β.

Proposition 6.16. The Gaussian primes, up to units, are precisely the following: (i) primes p ∈ N
not of the form x2 + y2, (ii) α = a+ bi where N(α) is prime in N.

Proof. We know that elements of type (i) are prime in Z[i] by Section 6.3, and elements of type (ii)
are prime in Z[i] by Exercise 6.3. So we just have to show any prime α of Z[i] is, up to a unit, of
type (i) or (ii).

Consider N(α) = αα = n. Since α is also prime, αα is the unique prime factorization of n in
Z[i]. Either n is prime in N or not. If it is, then α is of type (ii) and we are done. If not, then n
has a non-trivial factorization n = ab in N. But since any prime factorization of n in Z[i] has only
two elements, a and b must be prime in Z[i], and the factorizations n = αα = ab are the same.
Thus uα ∈ equals a or b for some unit u. Moreover uα must be prime in N since it is prime in Z[i].
Hence uα is of type (i) by Section 6.3.

Exercise 6.11. Suppose α is prime in Z[i]. Show N(α) = p or N(α) = p2 for some prime p of N.

6.5 Fermat’s two square theorem

Now we can apply the theory of Z[i] to the classical problem, which number k are sums of two
squares, i.e., for which k is

Q(x, y) = x2 + y2 = k

solvable for x, y ∈ Z. Just by calculation, we can check that the numbers 1 ≤ k ≤ 50 which are
sums of two squares are

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50.

Here there is no apparent pattern, except perhaps that, as we have seen before, this sequence avoids
the numbers of the form 4n + 3. Now, if I ask you to check which primes 1 ≤ p ≤ 50 are sums of
two squares you will see

2, 5, 13, 17, 29, 37, 41
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so the primes < 50 which are not sums of two squares are precisely

3, 7, 11, 19, 23, 31, 43, 47.

Here, if we look at the mod 4 congruence classes we see the patter than p = x2 + y2 if and only
if p 6≡ 3 mod 4. This is the content of Fermat’s two square theorem, and it will answer the more
general question about when is n = x2 + y2.

Lemma 6.17. (Lagrange) A prime p = 4n+ 1 divides m2 + 1 for some m ∈ Z.

Proof. By Wilson’s theorem
(4n)! ≡ −1 mod p.

Note

(4n)! ≡ (2n)!× (2n+ 1)(2n+ 2) · · · 4n ≡ (2n)!× (−2n)(−2n+ 1) · · · (−1) mod p.

Hence
(4n)! ≡ (2n)!(−1)2n(2n)! ≡ ((2n)!)2 mod p.

Thus p|((2n)!)2 + 1.

Theorem 6.18. (Fermat) Let p be prime. Then p = x2 +y2 for some x, y ∈ Z if and only if p = 2
or p ≡ 1 mod 4.

Proof. (⇒) Suppose p = x2 + y2. We saw in Section 3.7 that p 6≡ 3 mod 4. However no prime is 0
mod 4, and 2 is the only prime which is 2 mod 4.

(⇐) We know 2 = 12 + 12 so suppose p = 4n + 1 for some n. By Lagrange’s lemma, p|m2 + 1
for some m ∈ Z. If p were a Gaussian prime, then p|m2 +1 = (m+ i)(m− i) would imply p|(m+ i)
or p|(m− i) in Z[i]. However this is not the case since m

p ±
i
p 6∈ Z[i]. So p is not a Gaussian prime,

i.e., p is the sum of two squares by Section 6.3.

Corollary 6.19. Let p be a prime which is not 3 mod 4. Then p = x2 + y2 has exactly 1 solution
for x, y ∈ N with x ≥ y.

Proof. There is a solution x2 + y2 = p by the theorem. We know that p = (x + yi)(x − yi) is a
factorization into primes in Z[i]. (Section 6.3) If we also have p = x′2+y′2 then p = (x′+y′i)(x′−y′i)
is also a prime factorization in Z[i]. But since prime factorization is unique, we have x′ + y′i =
u(x+ yi) or u(x− yi) for some unit u.

Suppose the former. If u = ±1 then x′ = ±x and y′ = ±y. If u = ±i then u = ±i, then x′ = ∓y
and y′ = ±x. Hence x′ and y′ are up to sign, x and y in some order. The case x′+y′i = u(x−yi) is
similar. So there is only one solution to p = x2 + y2 with x, y > 0, up to interchanging x and y.

Corollary 6.20. The primes of Z[i] are precisely units times (i) p where p = 4n+ 3 is a prime in
N, (ii) α = a+ bi where N(α) is either 2 or a prime of N congruent to 1 mod 4.

Proof. Combine Proposition 6.16 with Fermat’s two square theorem.

Theorem 6.21. A natural number n is a sum of two squares if and only if any prime p|n such that
p ≡ 3 mod 4 occurs to an even power in the prime factorization of n.
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Proof. Clearly n = x2 + y2 if and only if n = N(α) where α = x+ yi, i.e., n is a sum of two squares
if and only if it is the norm of some element of Z[i].

Let
n =

∏
pei

i

∏
q
fj

j

be the prime factorization of n in N where each pi ≡ 3 mod 4 and qj 6≡ 3 mod 4. Each qj = πjπj

where πj is some Gaussian prime. Thus

n =
∏

pei
i

∏
π

fj

j π
fj

j

is the prime factorization of n in Z[i], where each pi is of type (i) and each πj , πj is of type (ii), in
the notation of the above corollary.

(⇒) Suppose n = x2 + y2, i.e., n = N(α) for some α ∈ Z[i]. Let

α =
∏

rhi
i

∏
φ

kj

j

be the prime factorization of α in Z[i], again where each ri is of type (i) and each φj is of type (ii).
Then

α =
∏

rhi
i

∏
φ

kj

j =
∏

rhi
i

∏
φ

kj

j

is the prime factorization of α since each ri ∈ N. But then

αα =
∏

r2hi
i

∏
φ

kj

j φ
kj

j = n =
∏

pei
i

∏
π

fj

j π
fj

j

Hence up to reordering the primes (assuming all were distinct), we have ei = 2hi is even, which is
what we wanted to prove.

(⇐) Homework. (This direction is easier and you don’t need to use the unique factorization in
Z[i].)

This theorem, which was also known to Fermat, along with Corollary 6.19, shows the power of
having unique factorization in Z[i]. Now finish the proof yourself.

Exercise 6.12. Suppose n =
∏
p2ei

i

∏
q
fj

j where each pi, qj are primes of N such that each pi ≡
3 mod 4 and qj ≡ 1, 2 mod 4. (i) Show each p2ei

i and qfj

j is the norm of an element in Z[i]. (ii)
Deduce n = x2 + y2 for some x, y ∈ Z.

In fact, Gauss and Jacobi went further than Fermat’s theorem and proved the following (which
Fermat it seems also knew, though perhaps did not have a proof).

Theorem 6.22. Let r2(n) denote the number of solutions to x2 + y2 = n. Write n = 2fn1n2 where
n1 is a product of primes ≡ 1 mod 4 and n2 is a product of primes ≡ 3 mod 4. Then r2(n) = 0 if
n2 is not a perfect square, and r2(n) is 4 times the number of divisors of n1 otherwise.

We will not prove this now (although we could using the unique factorization in Z[i]), but one
of my goals for next semester is to prove a theorem of Dirichlet which essentially contains this as a
special case.

Exercise 6.13. Find an n such that n = x2 + y2 in at least two distinct ways (with x, y > 0 and
x ≥ y). Write down all solutions (with x, y > 0, x ≥ y). Using this, show there are two elements
α, β ∈ Z[i] such that N(α) = N(β) but α and β do not differ by units.
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6.6 Pythagorean triples

Definition 6.23. Let α, β ∈ Z[i]. If the only common divisors of α and β are units, we say α and
β are relatively prime.

Lemma 6.24. Suppose (x, y, z) is a primitive Pythagorean triple. Then x + yi and x − yi are
relatively prime in Z[i], i.e., they have no common prime divisors in Z[i].

Proof. Suppose instead, x + yi and x − yi have a common prime divisor π ∈ Z[i]. Then π divides
their sum 2x and their difference 2yi. Since x and y have no common prime factors in Z, they have
no common prime factors in Z[i]. Thus π must be a prime dividing 2, i.e., π = ±1 +±i. Then

N(π) = ππ = 2|(x+ yi)(x− yi) = x2 + y2 = z2.

This means z is even, so x2+y2 ≡ 0 mod 4, which implies x and y are both even, a contradiction.

Lemma 6.25. Suppose α, β ∈ Z[i] are relatively prime. If αβ = γ2 is a square in Z[i], then uα and
u−1β are squares for some unit u of Z[i].

Proof. Note that this is trivial if γ is a unit (and vacuous if γ = 0). So assume αβ is the square of
some γ ∈ Z[i], where γ is a non-zero non-unit. Then γ has a prime factorization in Z[i]:

γ =
∏

πei
i .

Thus the prime factorization of αβ is
αβ =

∏
π2ei

i .

Up to a reordering of primes, we have

α = u−1π2e1
1 · · ·π2ej

j

β = uπ
2ej+1

j+2 · · ·π
2ek
k

for some unit u.

Exercise 6.14. Give an example of relatively prime α, β in Z[i] such that αβ is a square in Z[i],
but α and β are not squares in Z[i].

Recall that (x, y, z) is a primitive Pythagorean triple if x, y, z ∈ N if gcd(x, y) = 1. If (x, y, z) is
a primitive Pythagorean triple, then (λx, λy, λz) is also a Pythagorean triple. It is also clear that
all Pythagorean triples are multiples of the primitive ones. Hence to determine all Pythagorean
triples, it suffices to determine the primitive ones, which we now see how to do using Z[i].

Proposition 6.26. (x, y, z) is a primitive Pythagorean triple if and only if x and y are (in some
order) u2− v2 and 2uv for u, v relatively prime in N with u > v and u, v not both odd. In this case,
z = u2 + v2.

Proof. (⇐) This was Exercise 2.1.5.
(⇒) Suppose (x, y, z) is a primitive Pythagorean triple, so x2 + y2 = (x + yi)(x − yi) = z2.

By the first lemma, x+ yi and x− yi are relatively prime, and by the second they are units times
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squares. In particular x + yi = ±α2 or x + yi = ±iα2 for some α ∈ Z[i]. Since −1 is a square in
Z[i], we may absorb the possible minus sign into α and write either x+ yi = α2 or x+ yi = iα2.

Write α = u+ vi, and we get in the first case

x+ yi = (u+ vi)2 = u2 + v2 + 2uvi

and
x+ yi = i(u+ vi)2 = −2uv + (u2 + v2)i.

In the first case we have x = u2 + v2, y = 2uv. In the second, we may replace u by −u to write
x = 2uv, y = u2 + v2. Then the conditions gcd(u, v) = 1, u > v and u, v not both odd all follow
from the facts that gcd(x, y) and x, y > 0 just as in Exercise 2.1.5.

The last statement is obvious.

Corollary 6.27. Let p ∈ N be prime. Then p occurs as the hypoteneuse of a right-angle triangle
with integer length sides if and only if p > 2 is a sum of two squares, i.e., if and only if p ≡ 1 mod 4.

Proof. The second equivalence is Fermat’s two square theorem, so it suffices to prove the first.
(⇒) Suppose p is such a hypotenuse. Clearly p 6= 2. Now x2 +y2 = p2. This implies gcd(x, y) =

1. Hence by the proposition p = u2 + v2 for some u, v.
(⇐) Suppose p = u2 + v2 is odd. Then u 6= v and u and v are not both odd. Furthermore, we

may assume u > v. By the proposition (u2 − v2, 2uv, p) is a primitive Pythagorean triple.

6.7 *Primes of the form 4n + 1

I mentioned earlier that precisely half of the primes in Z remain prime in Z[i], and half factor in
Z[i]. We saw that the primes in the first groups are the primes which are 3 mod 4, and the primes
in the second group are 2 and those 1 mod 4. My claim then is that, in a sense which can be made
precise, half of the (odd) primes in N are 1 mod 4 and half are 3 mod 4.

In this section we will prove that there are infinitely many primes of the form 4n+1 and, in the
exercises, infinitely many primes of the form 4n+ 3.

Proposition 6.28. Let p be an odd prime. Then x2 ≡ −1 mod p has a solution if and only if
p = 4n+ 1.

Proof. (⇒) Suppose x2 ≡ −1 mod p but p = 4n+ 3. Then

xp−1 ≡ x4n+2 ≡ (x2)2n+1 ≡ (−1)2n+1 ≡ −1 mod p,

which contradicts Fermat’s little theorem. Hence p ≡ 1 mod 4.
(⇐) Suppose p = 4n+1. Then Lagrange’s lemma (Lemma 6.17) says p|m2 +1 for some m ∈ Z.

Hence m2 ≡ −1 mod p.

The above proposition is a special case of Gauss’s golden theorem in number theory, quadratic
reciprocity. We will treat quadratic reciprocity in Chapter 9, but for now, we will use the above to
prove the following.

Proposition 6.29. There are infinitely many primes of the form 4n+ 1.
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Proof. The above proposition says an odd prime p is of the form 4n+ 1 if and only if p|x2 + 1 for
some x ∈ Z. Hence it suffices to show that there are infinitely many primes dividing the values of
the polynomial f(x) = x2 + 1.

Suppose instead only finitely many primes p1, . . . , pk (including 2) divide the values of f(x). Let

g(y) = f(p1 · · · pky) = (p1 · · · pk)2y2 + 1

The values of g(y) are a subset of the values of f(x) so the only primes which divide values of g(y)
are p1, . . . , pk. However

g(y) ≡ 1 mod pi

for i = 1, 2, . . . , k. Hence g(1) = (p1 · · · pk)2+1 > 1 is not divisible by any prime, a contradiction.

Exercise 6.15. Let f(x) be any nonconstant polynomial over Z. Show there are infinitely many
primes dividing the values of f(x). (Cf. Exercises 6.7.1—6.7.4.)

Exercise 6.16. Show that there are infinitely many primes of the form 4n+3 (Cf. Exercises 6.3.4—
6.3.6. Note that this argument is similar to the 4n+ 1 case with the polynomial f(x) = 2x2 + 1. If
you like, you may try to use this idea and apply the previous exercise.)

The above results are a special case of the following.

Theorem 6.30. (Dirichlet’s theorem on arithmetic progressions) Suppose gcd(a, n) = 1.
There are infinitely many prime p ≡ a mod n.

The proof was surprisingly novel, using an analytic tool that Dirichlet invented called L-
functions, which form a central topic in modern number theory. We will not prove this theorem
this semester, but will come back to it next semester when we introduce Dirichlet’s L-functions.

Now that we know there are infinitely many primes which are 1 mod 4 and 3 mod 4, you might
wonder whether there’s something further about my assertion that half of the (odd) primes are
1 mod 4 and half are 3 mod 4. The answer is yes, Dirichlet proved something even more precise
than the above theorem.

Theorem 6.31. (Dirichlet) The odd primes, with the natural ordering, are equally distributed in
the two congruence classes 4Z + 1 and 4Z + 3, i.e.,

lim
n→∞

# {p < n : p ≡ 1 mod 4 prime}
# {p < n : p ≡ 3 mod 4 prime}

= 1.

Dirichlet in fact proved that mod any n, the primes (not dividing n), are equally distributed (in
the above sense) among the φ(n) congruence classes nZ + a where gcd(a, n) = 1.

Nevertheless, Chebyshev noticed an interesting phenomenon, more amazing in light of the equal
distribution result of Dirichlet: there appear to be more primes of the latter form. Precisely, if we
actually count the primes in each class less than n, “most of the time” we have

# {p < n : p ≡ 3 mod 4 prime} > # {p < n : p ≡ 1 mod 4 prime}

For example, the first time the right hand side is greater is for n = 26861. One might wonder if
Chebyshev’s observation just happens to be true for small values of n. In fact for infinitely many
n the left hand side is greater, and infinitely many n the right hand side is greater. Nevertheless,
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Chebyshev was right. In 1994, Rubinstein and Sarnak showed, in an appropriate way of quantifying
things, the above inequality holds about 99.59% of the time. Very roughly, one reason why there
are more primes in 4Z + 3 is because 4Z + 1 must contain all the odd squares, leaving less room for
primes. If you are interested in learning more about this, see the excellent, very readable exposition
Prime Number Races by Andrew Granville and Greg Martin (Jan. 2006 American Math Monthly,
available online).

6.8 Discussion

Again, I think it’s worth reading.
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