
12 Prime ideals

Again, the presentation here is somewhat different than the text. In particular, the sections do not
match up. (In fact we have done some of the Chapter 12 material in the text in our Chapter 11
notes.)

Our goal is to prove that OK has unique factorization into prime ideals for any number field K.
We will use this to determine which primes are of the form x2 + 5y2.

12.1 The ideal factorization theorems

We are still missing one main ingredient to prove the existence of factorization into prime ideals.
The ingredient we need is the following result.

Proposition 12.1. Let K be a number field and I,J be nonzero proper ideals of OK . If J |I and
I 6= J , then I = JJ ′ for some nonzero proper ideal J ′ of OK .

In other words, this notion of J |I for ideals, means I really factors as a product I = JJ ′.
This is an immediate consequence of Corollary 12.6 below. Stillwell gives what is perhaps a simpler
argument for this in Section 12.5 when K is an imaginary quadratic field. For the moment, let’s
take it for granted and see how it implies existence of prime factorization for ideals.

Theorem 12.2. (Existence of factorization into prime ideals) Let K be a number field and
I be a nonzero proper ideal of OK . Then I = p1 · · · pk where pi’s are prime ideals of OK .

Proof. Either I is maximal (and therefore prime) or not. If so we’re done, so suppose not. Then
there is some prime ideal p1 which contains I by Prop 11.15 and Cor 11.19. By the above proposition,
we can write I = p1J1 for some ideal nonzero proper ideal J1. Further J1 ⊇ I. We repeat this
argument so that at each stage we get I = p1p2 · · · pnJn and I ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn ⊆ OK . This
has to terminate at some point because we can only nest in a finite number of ideals in between I
and OK (since OK is finitely generated—we used this also in Prop. 11.15), i.e., at some point we
have Jk = pk is prime.

Theorem 12.3. (Uniqueness of prime ideal factorization) Let I be a nonzero proper ideal of
OK and suppose

I = p1p2 · · · pr = q1q2 · · · qs

where each pi and qj is a prime ideal of OK . Then r = s and, up to reordering the qj’s, pi = qi for
1 ≤ i ≤ r.

Stillwell gives a simple argument for this, but just like his argument for unique prime factorization
in Z, it is lacking when some of the prime ideals are repeated in the factorization.

For a complete proof, we would like to make the following argument. Suppose

p1p2 · · · pr = q1q2 · · · qs

for some prime ideals pi, qj . By the prime divisor property, i.e., the definition of prime ideals,
p1|q1q2 · · · qs implies p1 divides one of the qj ’s, say q1. Since p1 and q1 are maximal (prime), p1

divides (contains) q1 implies p1 = q1. Now we would like to be able to multiply both sides by the
“inverse” of p1, some p−1

1 , to conclude

p2 · · · pr = q2 · · · qs.
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Repeating this argument would show r = s and pi = qi for each i, giving uniqueness of prime ideal
factorizations.

Now if we think about ideals in Z, prime ideals are of the form p = (p). Such a p−1 would have
to be something like the ideal generated by p−1, which is not an element of Z. Nevertheless, we can
formally construct such ideals, which will be called fractional ideals, to apply the above argument.
Precisely what we need is given below in Corollary 12.7. It turns out that the theory of fractional
ideals will also provide the proof of Proposition 12.1.

12.2 Fractional ideals and the class group

Definition 12.4. Let K be a number field, and I ⊆ K. If aI = {ai : i ∈ I} is an ideal of OK

for some nonzero a ∈ OK , we say I is a fractional ideal of OK . Further if aI is principal, we
say I is principal. Denote the set of nonzero fractional ideals of OK by Frac(OK), and the set of
nonzero principal ideals by Prin(OK).

Put another way, the fractional ideals of OK are just subsets of the form a−1I where a ∈ OK ,
a 6= 0 (possibly a = 1, so this includes the case of usual ideals). It is clear that fractional ideals
still satisfy the two defining properties of ideals: (i) closed under addition, and (ii) closed under
multiplication by elements of OK . The only thing they don’t satisfy in the definition of ideals is
that they may not be contained in OK .

Note on terminology: whenever I say an ideal of OK , I will mean an honest ideal in OK . If I
mean fractional ideal, I will always say fractional. However, sometimes I will say ordinary ideal to
stress that we are talking about honest ideals contained in OK .

Example. The fractional ideals of Z = OQ are 1
n(m) =

{
km

n : k ∈ Z
}
where m ∈ N ∪ {0}, n ∈ N

and gcd(m,n) = 1. To see this, it is clear from the definition, together with the classification of
ideals of Z, that they are subsets of Q of the form a

n(m) for some a
n ∈ Q and m ∈ N ∪ {0}, i.e., all

integer multiples of the rational number an
m . Renaming am to m, we see get all multiples of m

n . It
is clear we may take gcd(m,n) = 1 and n > 0 to give the claim.

Hence the fractional ideals of Z are in 1-to-1 correspondence with Q≥0, the set of nonnegative
rational numbers. Precisely, the correspondence is a nonnegative rational number corresponds to the
fractional ideal which is all integral multiples of that number.

Example. Let K be a number field. Any ideal of OK is a fractional ideal. If a ∈ K, then aOK is
also a fractional ideal.

Example. Let K be a number field. Then K is not a fractional ideal of OK , even though it satisfies
the properties of being closed under addition and multiplication by elements of OK , because there is
no element a of OK such that aK ⊆ OK . A similar non-example (for the same reason), but perhaps
less trivial, is the ring Z[12 ] =

{
a
2k : a, k ∈ Z

}
.

One formally defines the product of fractional ideals in the same way as for ideals: IJ =
{i1j1 + i2j2 + · · · ikjk : im ∈ I, jn ∈ J }. The point is every (non-zero) fractional ideal is invertible.

Exercise 12.1. Let I = (n) be a non-zero ideal of Z. Check the fractional ideal I−1 = 1
nZ is

indeed the inverse of I, i.e., II−1 = (1) = Z. Similarly, for any number field K and any non-zero
principal ideal I = (α) of OK , show α−1OK is the inverse of I, i.e., II−1 = (1) = OK .
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Exercise 12.2. Let K be a number field. Show the principal fractional ideals of OK correspond to
the elements of K, up to units.

In fact, the product of principal (fractional) ideals corresponds to the product of elements of K
(up to units). In the case K = Q, Frac(OK) is essentially Q>0 the positive rational numbers, which
forms a group under multiplication. More generally we have the following.

Theorem 12.5. Frac(OK) is an abelian group under multiplication, and OK is the identity element.

Exercise 12.3. Check that OK is the identity element of Frac(OK), i.e., if I ∈ Frac(OK), show
OK · I = I.

Proof. First note that the product of two fractional ideals I and J is again a fractional ideal. This is
because there exist a, b ∈ OK such that aI and bJ are ideals of OK . Then abIJ is just the product
of two ordinary ideals aI and bJ of OK , and thus itself an ideal of OK . Hence multiplication is a
binary operation on Frac(OK).

One formally checks from the definition that multiplication is associative and commutative. This
is straightforward and I will not write it down.

The exercise above shows OK is a multiplicative identity, so it suffices to show every element
has an inverse. Let I be an (ordinary) ideal of OK . Define I−1 = {a ∈ K : aI ⊆ OK}. Then it is
easy to see that I−1I ⊆ OK . It takes a little more work to show I−1I = OK , and in the interest of
time I will omit it, though it is nothing too difficult (the proof is about 1–11

2 pages, see any text on
Algebraic Number Theory). Roughly, one can use a descent-type argument to reduce the proof to
the case where I maximal. It easy to see I−1 6⊆ OK (exercise below), and therefore I−1I is strictly
larger than I. But then the maximality of I implies I−1I must be OK .

Corollary 12.6. Let I, J be ideals of OK . Then J |I ⇐⇒ I = JJ ′ for some (ordinary) ideal
J ′ of OK .

Proof. Let J ′ be the fractional ideal J ′ = J −1I. Then I = JJ ′, and the corollary then reads
J |I ⇐⇒ J ′ is an ordinary ideal of OK , i.e., if and only if J ′ = J −1I ⊆ OK . Multiplying both
sides by J , this is true if and only if I ⊆ JOK = J , which was the definition of J |I.

This completes the proof of Proposition 12.1, and hence Theorem 12.2.

Corollary 12.7. Let I,J ,J ′ be ideals of OK . If IJ = IJ ′, then J = J ′.

Proof. Multiply by I−1.

This completes the proof of Theorem 12.3.

Exercise 12.4. Let I,J be ideals of OK . Then J |I ⇐⇒ J ⊇ I ⇐⇒ J −1 ⊆ I−1. (Hint:
it’s easy if you use Theorem 12.5 to multiply by inverses like in the corollary above.) Note when
J = OK , this says I−1 ⊇ OK .

Corollary 12.8. Prin(OK) is a subgroup of Frac(OK).

Proof. Since it’s a subset of Frac(OK) is suffices to check it’s closed under multiplication and
inverses. Suppose I,J ∈ Prin(OK). Then aI = (b) and cJ = (d) for some a, b, c, d ∈ OK where
a, c 6= 0. In other words, I is all integer (OK) multiples of b

a and J is the integer multiples of d
c .

Hence their product is the integer multiples of bd
ac , which is again a principal fractional ideal.

It is closed under inverses, because I−1 is just the set of all integer multiples of a
b (proof same

as for Exercise 12.1), which is again a prinicipal fractional ideal.
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It is simple result from group theory that if A is an abelian group and B is a subgroup, the set
of cosets A/B forms an abelian group, called the quotient group. I will assume that you know this,
or are willing to take it for granted. We won’t really use the group structure anyway, but we will
use the term group.

Definition 12.9. Let K be a number field. The class group of K (or of OK) is defined to be
the quotient group Frac(Ok)/Prin(OK), and denoted ClK or Cl(OK), or possibly Cl(K) or ClOK

, or
maybe even HK or H(K). The class number of K (or of OK) is h(K) = hK = #ClK .

The class group has been one of the fundamental objects of study in number theory since Gauss
developed the theory of binary quadratic forms. Note that the class group is trivial, i.e., the class
number is 1, if and only if every fractional ideal of OK is principal. It is easy to see that this
happens if and only if every ideal of OK is principal, since the inverses of prinicipal ideals are
principal fractional ideals, and the inverses of nonprincipal ideals are nonprincipal fractional ideals.
Hence hK = 1 if and only if OK has unique factorization.

In fact the class group measures in a very precise way, exactly just how much unique factorization
can fail in OK , and these notions have been studied over the past 50 years. For instance, in 1960
Carlitz showed that every irreducible factorization of an element α in OK has the same length
(number of irreducible factors, with multiplicity) if and only if hK ≤ 2. The quantitative study of
the relation with the class group of OK and the non-uniqueness of factorization in OK for some
reason is not addressed in most number theory texts, but for a good account of this theory, see
Chapter 9 of Narkiewicz’s Elementary and Analytic Theory of Algebraic Numbers.

One of the major problems of algebraic number theory is understanding the class group of a
number field. In particular, using Minkowski’s theorem (see Chapter 8, the second proof) one can
provide a bound on the class number, which is sufficient to determine the class number in special
cases, but not in general. On the other hand, Dirichlet proved an exact formula for the class
number of quadratic fields in terms of his L-functions, but again this is not always computationally
feasible enough to use to pin down the class number exactly. Indeed if one looks at a table of class
numbers just for imaginary quadratic fields, there is no apparent pattern, so one can not hope for
an elementary formula.

I briefly discussed the problem of determining which quadratic fields have class number 1 in the
section on PIDs, since these notions are equivalent, so this should give you some idea of the state
of things. Recall in particular that there are 9 imaginary quadratic fields K = Q(

√
−d) such that

OK is a PID, i.e., has class number 1. Using Minkowski’s bound it is easy to check that these 9
fields found by Gauss all have class number 1, but it is much harder to show that there are no
others. In fact these questions are related to difficult problems in the theory of elliptic curves. In
2004, Watkins determined all imaginary quadratic fields with class number n for n ≤ 100 (there are
finitely many). However, a s mentioned before, it is not even known if there are infinitely many real
quadratic fields with class number 1, but it is conjectured that about 75% do.

12.3 Equivalence classes

Definition 12.10. Let K be a number field and I, I ′ ∈ Frac(OK). We say I and I ′ are equivalent,
and write I ∼ I ′, if I ′ = J I for some J ∈ Prin(OK).

In other words, with this notion of equivalence, the class group is the group of equivalence
classes in Frac(OK). In other words, I ′ ∼ I means I ′ = αI for some α ∈ K (by Exercise 12.2), i.e.,
equivalent fractional ideals just differ by scalars.
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Now we can relate this notion with the book’s geometric notion of the “shape” of an ideal. If
K = Q(

√
−d) is an imaginary quadratic field, then OK is a lattice in C. Similarly, any fractional

or ordinary ideal of OK will be a lattice in C, and two of them will have the same shape if an only
if they differ by scalars (remember, a real number scalars would just scale a lattice symmetrically
by a certain amount, and a complex number scalar will involve a rotation). Hence two (fractional
or ordinary) ideals if and only if they are equivalent.

The following is an immediate consequence of the definition of fractional ideals and equivalence,
but worth pointing out.

Lemma 12.11. Let K be a number field. If I ∈ Frac(OK), then I ∼ I ′ where I ′ is an ordinary
ideal of OK .

Proof. By definition I ′ = aI is an ordinary ideal of OK for some a ∈ OK . Since I ′ = (a)I,
I ′ ∼ I.

12.4 Primes of the form x2 + 5y2

One of our motivating questions this semester was: which numbers are of the form x2 + ny2? By
Brahmagupta’s composition law, this essentially reduces to the question of which primes are of the
form x2 + ny2, which has a much cleaner answer (cf. Chapter 6 for n = 1). We have dealt with the
cases n = 1, 2, 3 by using unique factorization in the rings Z[i], Z[

√
−2] and Z[ζ3] = OQ(

√
−3. By

the exercise below, we can reduce the n = 4 case to the n = 1 case because x2 + 4y2 = x2 + (2y)2.

Exercise 12.5. Use Fermat’s 2 square theorem to determine the primes of the form x2 + 4y2

(Exercise 12.8.1).

Hence the next logical case is n = 5. Unfortunately, the same approach does not work because
Z[
√
−5] = OQ(

√
−5) does not have unique factorization.

Lemma 12.12. The class number hQ(
√
−5) = 2, and representatives for the class group are (1) and

(2, 1 +
√
−5).

Proof. First note the class number is not 1, i.e., Z[
√
−5] is not a PID, since p = (2, 1 +

√
−5) is not

a principal ideal. The argument is the same as for the ideal (2, 1 +
√
−5) in Z[

√
−3]. Here is one

argument.
Let α be an non-zero element of p of smallest possible norm. Recall the N(a+b

√
−5) = a2+5b2,

so the only elements of norm less than 4 = N(2) in Z[
√
−5] are ±1. Note 1 ∈ p (which is equivalent

to −1 ∈ p) means

1 = 2(a+ b
√
−5) + (1 +

√
−5)(c+ d

√
−5) = 2a+ 2b

√
−5 + c− 5d+ (c+ d)

√
−5

Looking at real and imaginary parts we have 1 = 2a+ c− 5d and 0 = 2b+ c+d, but the first means
c 6≡ d mod 2 and the second means c ≡ d mod 2 which is impossible. Hence α = ±2. If p were
principal, it would have to be generated by α, which it is not, since 1 +

√
−5 6∈ (α).

Hence the class number is at least 2. To show it equals 2, we want to show that if I is any
non-principal fractional ideal of Z[

√
−5] is equivalent to (2,

√
−5). It in fact suffices to show this for

I an ordinary non-prinicpal ideal, since I is equivalent to an ordinary ideal by the previous lemma.
Let α be a non-zero element of I of minimal norm. Since I is not principal, there exists an

element β ∈ I such that β 6∈ (α). Consider the rectangle (p. 232 of Stillwell) with corners 0, α,
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√
−5α and (1+

√
−5)α. By adding appropriate an appropriate multiple of α to β, we may assume β

lies in this rectangle. In fact, by replacing β with α−β if necessary, we may assume β is in the “left
half” of the rectangle. Similarly, replacing β with (1 +

√
−5)α− β if necessary, we may assume β is

in the “lower left quadrant” of the rectangle. This means 2β will still be contained in the rectangle.
In particular N(2β) ≤ N((1 +

√
−5)α), since the norm is just the square of the distance from the

origin. But this means N(β) ≤ N(α) since N(2) = N(1 +
√
−5) = 4. Then by the assumption that

N(α) is minimal, we conclude N(α) = N(β). Then the only possibility for β is β = 1+
√
−5

2 α (any
other point in the “lower left quadrant” of the rectangle has smaller norm).

Now we claim I = (α, β). If not, take γ ∈ I but not in (α, β). Applying the same argument
above for γ in place of β, we may assume γ is in the lower left quadrant, and conclude that
γ = β = 1+

√
−5

2 , a contradiction. Hence

I = (α, β) = (α,
1 +
√
−5

2
α) ∼ 2(α,

1 +
√
−5

2
α) = (2α, (1 +

√
−5)α) ∼ (2, 1 +

√
−5).

Example. Let q = (3, 1 +
√
−5) ∈ Z[

√
−5]. As above, one may show q is not principal. Thus

q ∼ p = (2, 1 +
√
−5). To see this directly, note that

(1 +
√
−5)p = (2(1 +

√
−5),−4 + 2

√
−5) = (2(1 +

√
−5), 6) ∼ (1 +

√
−5, 3).

The only non-obvious equality is the middle one, but this is true because 6 = 2(1 +
√
−5) − (−4 +√

−5) ∈ (2(1 +
√
−5),−4 + 2

√
−5). Hence (2(1 +

√
−5),−4 + 2

√
−5) ⊇ (2(1 +

√
−5), 6). Writing

−4 +
√
−5 = 2(1 +

√
−5)− 6, we see that (2(1 +

√
−5),−4 + 2

√
−5) ⊆ (2(1 +

√
−5), 6) also holds.

Let us take for granted the following basic facts on norms of ideals, which I may prove formally
next semester.

Proposition 12.13. Let K be a number field and I,J be ideals of OK . Then N(IJ ) = N(I)N(J ).
Further if K = Q(

√
d) is a quadratic field (real or imaginary) and a ∈ OK , then N(a) = N((a)),

i.e., the norm of the element a (as previously defined N(a) = aa) equals the norm of principal ideal
(a).

The multiplicativity is essentially just a standard ring isomorphism theorem, which says (OK/I) '
(OK/IJ )/(I/IJ ). The cardinality of the quotient on the left is N(I), while that on the right is
N(IJ )/N(J ).

Theorem 12.14. Let p ∈ N be prime. Then p = x2 +5y2 for some x, y ∈ Z ⇐⇒ p ≡ 1, 9 mod 20.

Proof. (⇒) Suppose p = x2 + 5y2. It is clear p 6= 2, 5, so p mod 20 must be relatively prime to 2
and 5. The squares mod 20 are 0, 1, 4, 5, 9, 16. Thus the only values of x2 + 5y2 that are relatively
prime to 2 and 5 are 1 and 9.

(⇐) Suppose p ≡ 1, 9 mod 20. By quadratic reciprocity, we see that
(−5

p

)
= 1, i.e., p|m2 + 5 =

(m +
√
−5)(m −

√
−5) for some m ∈ Z. On the other hand p - m ±

√
−5 in Z[

√
−5] since

m
p ±

√
−5
p 6∈ Z[

√
−5]. In other word, the principal ideal (p)|(m +

√
−5)(m −

√
−5) in Z[

√
−5] but

(p) - (m+
√
−5) and (p) - (m−

√
−5) (these are denote principal ideals). Hence (p) is not a prime

ideal of Z[
√
−5].
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Now by the prime ideal factorization theorem, (p) factors into prime ideals (p) = p1p2 · · · pr.
Looking at norms, we see N(p1)N(p2) · · ·N(pr) = N((p)) = N(p) = p2. Since each N(pi) > 1
(otherwise pi = OK), we must have r = 2 and N(p1) = N(p2) = p.

Consider p1. Either it is principal or not. If it is, say p1 = (a+ b
√
−5). Then N(p1) = p means

N(a+ b
√
−5) = a2 + 5b2 = p, and we are done.

If not, then p1 ∼ (2, 1 +
√
−5) so p1 = α(2, 1 +

√
−5) for some α ∈ K. Writing α = a

b + c
d

√
−5

with a, b, c, d ∈ Z, we see 2α, (1 +
√
−5)α ∈ OK implies either α ∈ OK (b = d = 1) or α =

1+
√
−5

2 OK (b = d = 2 and a ≡ c mod 2). However one easily checks that 1+
√
−5

2 (2, 1 +
√
−5) =

(1 +
√
−5,−4 + 2

√
−5) = (1 +

√
−5, 2), so without loss of generality we may assume α ∈ OK . But

then p1 = (α)(2, 1+
√
−5) is a factorization of p1 into ideals of OK . Since p1 is prime (maximal), this

factorization must be trivial, i.e., we must have (α) = Z[
√
−5]. But thenN(p1) = N((2, 1+

√
−5)) =

2 (as computed in your homework), which is not ≡ 1, 9 mod 20. Hence p1 must be principal.

Remarks.
(1) While we did not explicitly use uniqueness of prime factorization, we used the existence,

together with the explicit structure of the class group of Z[
√
−5]. Both of these inputs rely on the

fact that Frac(OK) is a group, which was our key to proving the uniqueness. Additionally, one may
want to use uniqueness in to prove the fact that the norm is multiplicative.

(2) An alternative proof that does not rely on the unproven norm facts is in the last section of
Stillwell. However, I opted for the above proof because (i) it is much simpler, (ii) it illustrates the
usefulness of norms of ideals, (iii) it is more typical and enlightening of the applications of ideal
factorization, and (iv) it is much more similar to the arguments we made before for Z, Z[i] and
Z[
√
−2].
(3) Here is an alternative way to compute N((2, 1 +

√
−5)). Since (2, 1 +

√
−5) divides (2),

we must have (2) = (2, 1 +
√
−5)p for some proper ideal p (in fact p = (2, 1 +

√
−5). Then

4 = N((2)) = N((2, 1 +
√
−5))N(p) which implies N((2, 1 +

√
−5)) = N(p) = 2. You are free to

use the multiplicativity of the norm on the final exam.

To close, let us revisit the example of the non-unique factorization

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

in Z[
√
−5]. In terms of principal ideals, this says

36

(6)=
4

(2)
9

(3)=
6

(1 +
√
−5)

6

(1−
√
−5) .

Here the numbers above the ideals are the norms of each ideal. So in some sense, this non-unique
factorization is like the non-unique factorization of 36 into two non-irreducibles of Z.

Let p = (2, 1 +
√
−5), q = (3, 1 +

√
−5) and q = (3, 1 −

√
−5). We have already computed

that N(p) = 2. Similarly one computes N(q) = N(q) = 3. If the norm of an ideal is prime in Z,
that means the ideal itself must be a prime ideal (by multiplicativity), so p, q, q are all prime ideals.
Note that 1 −

√
−5 = 2 − (1 +

√
−5) ∈ p (this is why we don’t consider p, since p = p), so p|(2),

p|(1+
√
−5) and p|(1−

√
−5). Similarly, q|(3), q|(1+

√
−5), and q|(3), q|(1−

√
−5). One can easily

check that q 6= q, so we have 2 divisors of the ideal (3). Since N(q)N(q) = N((3)), there can’t be
any other divisors. This proves

(3) = qq
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(without explicitly doing the calculation of the product on the right, though one could obviously
also do that). Similarly we have

(1 +
√
−5) = pq, (1−

√
−5) = pq.

Finally, to check
(2) = p2

we can do the same argument of norms, ones we check that 2 ∈ p2 so we know that p2|(2). An
alternative argument is the following—since Cl(Z[

√
−5]) has order 2, any ideal squared must be

equivalent to (1), i.e., the square of any ideal is principal. In particular p2 is principal, and since it
has norm 4 it must be generated by an element of Z[

√
−5] of norm 4—but the only such elements

are ±2. Thus the non-unique factorization is resolved in terms of ideals as

(6) = (2)(3) = p2qq = (pq)(pq) = (1 +
√
−5)(1−

√
−5).

Another way to look at this example, more in line with Kummer’s original ideas of adding ideal
numbers to the ring, is the following. Somehow p should be correspond to the “ideal number”
α = 1+

√
−5

3 . The reason for this, is that if p were a principal ideal (α), both 2 and 1 +
√
−5 would

have to be multiples of α. Since p 6= Z[
√
−5], α 6= 1, and a reasonable choice would be α = 1+

√
−5

3 .
Then α(1 −

√
−5) = 2 and 3α = 1 +

√
−5. Similarly, we see that q is like the “ideal number”

β = 1+
√
−5

2 and q is like the “ideal number” β = 1−
√
−5

2 . In terms of α, β, β, we can resolve the
factorization

2 · 3 =
1 +
√
−5

3
(1−

√
−5) · (1 +

√
−5)

1−
√
−5

2

=
1 +
√
−5

3
1−
√
−5

2
(1 +

√
−5) · (1−

√
−5) = (1 +

√
−5) · (1−

√
−5)

in the ring Z[α, β, β]. The technical problem is that α, β, β are not algebraic integers—for instance
β − β2 = 1

2 . This this ring has infinite degree over Z (a Z-basis for the ring is infinite) and this
factorization, while resolved, is in fact made trivial, because 2, 3 and 6 are all units in this ring.

There are, however, ways to recover unique factorization in Z[
√
−5] (without trivializing the

problems) by passing to the ring of integers of a larger number field. For instance every element
of Z[

√
−5] factors uniquely into irreducibles in the ring of integers of K = Q(

√
−5,
√

2). However,
other difficulties arise with this approach, which I’ve alluded to before: (1) in general, how do you
find the appropriate number field K to work in, (2) how do you determine its ring of integers OK

and irreducible elements of OK , (3) this ring OK itself may not have unique factorization. (While
we can guarantee any element of the smaller ring factors uniquely into irreducibles in OK , this may
not be true for every element of OK). Thus the approach via Dedekind’s ideal theory is generally
the most satisfactory.
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