

Linear Algebra (MATH 3333) Spring 2009 Section 2

Midterm Practice Problems

Throughout the exam, V denotes a vector space.

1. Go over the problems on your quiz and previous homeworks, and make sure you can do them correctly.

True/False

Circle T or F.

2. T F Any two nonzero vectors in \mathbb{R}^3 are linearly independent.
3. T F A minimal spanning set for V is a basis for V .
4. T F Any subspace of \mathbb{R}^2 is either a line through the origin or \mathbb{R}^2 .
5. T F The span of two nonzero vectors is either a line through the origin or a plane through the origin.
6. T F The set of polynomials in x of degree at most 5 form a vector space.

Definitions

7. If $S = \{v_1, v_2, \dots, v_k\} \subseteq V$, define $\text{span}(S)$.
8. With S as above, define what it means for S to be a basis of V .
9. With S as above, define what it means for S to be linearly independent.

Problems

Show your work (i.e., prove your answers except where stated otherwise).

10. Show that the set of vectors of the form $\begin{pmatrix} a \\ b \\ a+b \end{pmatrix}$ in \mathbb{R}^3 forms a subspace of \mathbb{R}^3 . Find a basis for this space (no proof needed). Describe this space geometrically.
11. Do the same as the previous problem for the subset $\{(x, y, z) : x + y + z = 0\}$ of \mathbb{R}^3 .
12. Find two different bases for \mathbb{R}^2 (no proof needed).
13. Is $\{(x, y, z) : 2x - 3y + z = 1\}$ a subspace of \mathbb{R}^3 ?
14. Solve the system of equations or conclude that no solutions exist:

$$\begin{aligned} x - y &= 1 \\ 2x - y - z &= 1 \\ -x + 2y - z &= 1. \end{aligned}$$

15. Solve the system of equations or conclude that no solutions exist:

$$\begin{aligned} -2x + y + z &= 1 \\ x + z &= 0 \\ x + y - 2z &= -1. \end{aligned}$$

16. Is $\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}$ linearly independent? If not, find a maximal linear independent subset.

17. Do the same as the previous problem for $\left\{ \begin{pmatrix} 1 \\ 2 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.

17. Is $\left\{ \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \right\}$ a basis for \mathbb{R}^3 ?

18. Is $\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}$ a basis for \mathbb{R}^3 ?

19. Find a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 whose image is the set of vectors of the form $\begin{pmatrix} a \\ 2b-a \\ b \end{pmatrix}$.