

Linear Algebra (MATH 3333) Fall 2007 Sections 1/4

Homework 15

Due: Mon. Dec. 3, start of class

Instructions: You may **not** use a calculator (or computer). Make sure to write your name, course and section numbers in the top right corner of your solution set, as well as the assignment number on top.

Reading

Sections 7.2

Conceptual Questions

1. How can we compute high powers of matrices? Why do we want to?

Written Assignment

18 points

Problem A. (6 pts) Let

$$A = \frac{1}{2} \begin{pmatrix} 1 & 3 & -3 \\ 3 & 1 & -3 \\ 0 & 0 & 2 \end{pmatrix}.$$

- (i) Find the eigenvalues and eigenvectors of A
- (ii) Find a basis T of \mathbb{R}^3 such that $[A]_T$ is diagonal.
- (iii) Writing $A = P_{S \leftarrow T}[A]_T P_{T \leftarrow S}$ where S is the standard basis, compute A^{10} .

Problem B. (4 pts) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- (i) Prove A is *not* diagonalizable.
- (ii) While A is not diagonalizable, it is close to being diagonal, and is called *(upper) triangular*. This matrix is still easy to exponentiate. By computing the general product

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix},$$

determine A^{137} .

Problem C. (8 pts) Let $c(t)$ and $r(t)$ denote the number of coyotes and roadrunners in your backyard in t years from now. Suppose they satisfy the (oversimplified and bad) predator-prey relations $c(t+1) = 0.5c(t) + 0.25r(t)$ and $r(t+1) = -0.5c(t) + 1.25r(t)$.

- (i) Find formulas for $c(t)$ and $r(t)$ in terms of the initial populations $c(0)$ and $r(0)$.
- (ii) In particular, what will the population of coyotes and roadrunners be in 5 years if $c(0) = 10$ and $r(0) = 100$. What is the long term tendency of this system, i.e., what is the limit of $c(t)$ and $r(t)$ at $t \rightarrow \infty$?